Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Cell Rep ; 34(4): 108670, 2021 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-33503434

RESUMO

Inflammation-dependent base deaminases promote therapeutic resistance in many malignancies. However, their roles in human pre-leukemia stem cell (pre-LSC) evolution to acute myeloid leukemia stem cells (LSCs) had not been elucidated. Comparative whole-genome and whole-transcriptome sequencing analyses of FACS-purified pre-LSCs from myeloproliferative neoplasm (MPN) patients reveal APOBEC3C upregulation, an increased C-to-T mutational burden, and hematopoietic stem and progenitor cell (HSPC) proliferation during progression, which can be recapitulated by lentiviral APOBEC3C overexpression. In pre-LSCs, inflammatory splice isoform overexpression coincides with APOBEC3C upregulation and ADAR1p150-induced A-to-I RNA hyper-editing. Pre-LSC evolution to LSCs is marked by STAT3 editing, STAT3ß isoform switching, elevated phospho-STAT3, and increased ADAR1p150 expression, which can be prevented by JAK2/STAT3 inhibition with ruxolitinib or fedratinib or lentiviral ADAR1 shRNA knockdown. Conversely, lentiviral ADAR1p150 expression enhances pre-LSC replating and STAT3 splice isoform switching. Thus, pre-LSC evolution to LSCs is fueled by primate-specific APOBEC3C-induced pre-LSC proliferation and ADAR1-mediated splicing deregulation.


Assuntos
Inflamação/imunologia , Leucemia Mieloide Aguda/fisiopatologia , Proliferação de Células , Humanos , Células-Tronco Neoplásicas/metabolismo
2.
Proc Natl Acad Sci U S A ; 116(18): 8960-8965, 2019 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-30988206

RESUMO

Sequence variation data of the human proteome can be used to analyze 3D protein structures to derive functional insights. We used genetic variant data from nearly 140,000 individuals to analyze 3D positional conservation in 4,715 proteins and 3,951 homology models using 860,292 missense and 465,886 synonymous variants. Sixty percent of protein structures harbor at least one intolerant 3D site as defined by significant depletion of observed over expected missense variation. Structural intolerance data correlated with deep mutational scanning functional readouts for PPARG, MAPK1/ERK2, UBE2I, SUMO1, PTEN, CALM1, CALM2, and TPK1 and with shallow mutagenesis data for 1,026 proteins. The 3D structural intolerance analysis revealed different features for ligand binding pockets and orthosteric and allosteric sites. Large-scale data on human genetic variation support a definition of functional 3D sites proteome-wide.


Assuntos
Variação Genética/genética , Imageamento Tridimensional/métodos , Proteoma/genética , Sítios de Ligação , Calmodulina/genética , Análise Mutacional de DNA/métodos , Humanos , Ligantes , Proteína Quinase 1 Ativada por Mitógeno/genética , Modelos Moleculares , Conformação Molecular , Mutação , PPAR gama/genética , PTEN Fosfo-Hidrolase/genética , Conformação Proteica , Proteína SUMO-1/genética , Enzimas Ativadoras de Ubiquitina/genética
3.
Proc Natl Acad Sci U S A ; 115(14): 3686-3691, 2018 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-29555771

RESUMO

Reducing premature mortality associated with age-related chronic diseases, such as cancer and cardiovascular disease, is an urgent priority. We report early results using genomics in combination with advanced imaging and other clinical testing to proactively screen for age-related chronic disease risk among adults. We enrolled active, symptom-free adults in a study of screening for age-related chronic diseases associated with premature mortality. In addition to personal and family medical history and other clinical testing, we obtained whole-genome sequencing (WGS), noncontrast whole-body MRI, dual-energy X-ray absorptiometry (DXA), global metabolomics, a new blood test for prediabetes (Quantose IR), echocardiography (ECHO), ECG, and cardiac rhythm monitoring to identify age-related chronic disease risks. Precision medicine screening using WGS and advanced imaging along with other testing among active, symptom-free adults identified a broad set of complementary age-related chronic disease risks associated with premature mortality and strengthened WGS variant interpretation. This and other similarly designed screening approaches anchored by WGS and advanced imaging may have the potential to extend healthy life among active adults through improved prevention and early detection of age-related chronic diseases (and their risk factors) associated with premature mortality.


Assuntos
Doença/genética , Predisposição Genética para Doença , Processamento de Imagem Assistida por Computador/métodos , Mutação , Medicina de Precisão/métodos , Sequenciamento Completo do Genoma/métodos , Adulto , Idoso , Idoso de 80 Anos ou mais , Doenças Cardiovasculares/diagnóstico por imagem , Doenças Cardiovasculares/genética , Doenças Cardiovasculares/patologia , Doença/classificação , Feminino , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Masculino , Pessoa de Meia-Idade , Neoplasias/diagnóstico por imagem , Neoplasias/genética , Neoplasias/patologia , Doenças do Sistema Nervoso/diagnóstico por imagem , Doenças do Sistema Nervoso/genética , Doenças do Sistema Nervoso/patologia , Medição de Risco , Análise de Sequência de RNA , Adulto Jovem
4.
Cell Metab ; 25(5): 1054-1062.e5, 2017 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-28467925

RESUMO

The presence of advanced fibrosis in nonalcoholic fatty liver disease (NAFLD) is the most important predictor of liver mortality. There are limited data on the diagnostic accuracy of gut microbiota-derived signature for predicting the presence of advanced fibrosis. In this prospective study, we characterized the gut microbiome compositions using whole-genome shotgun sequencing of DNA extracted from stool samples. This study included 86 uniquely well-characterized patients with biopsy-proven NAFLD, of which 72 had mild/moderate (stage 0-2 fibrosis) NAFLD, and 14 had advanced fibrosis (stage 3 or 4 fibrosis). We identified a set of 40 features (p < 0.006), which included 37 bacterial species that were used to construct a Random Forest classifier model to distinguish mild/moderate NAFLD from advanced fibrosis. The model had a robust diagnostic accuracy (AUC 0.936) for detecting advanced fibrosis. This study provides preliminary evidence for a fecal-microbiome-derived metagenomic signature to detect advanced fibrosis in NAFLD.


Assuntos
Bactérias/isolamento & purificação , Microbioma Gastrointestinal , Cirrose Hepática/microbiologia , Hepatopatia Gordurosa não Alcoólica/microbiologia , Adulto , Idoso , Bactérias/genética , Fezes/microbiologia , Feminino , Humanos , Cirrose Hepática/diagnóstico , Masculino , Metagenômica/métodos , Pessoa de Meia-Idade , Hepatopatia Gordurosa não Alcoólica/diagnóstico , Prognóstico , Estudos Prospectivos
5.
PLoS Pathog ; 13(3): e1006292, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28328962

RESUMO

The characterization of the blood virome is important for the safety of blood-derived transfusion products, and for the identification of emerging pathogens. We explored non-human sequence data from whole-genome sequencing of blood from 8,240 individuals, none of whom were ascertained for any infectious disease. Viral sequences were extracted from the pool of sequence reads that did not map to the human reference genome. Analyses sifted through close to 1 Petabyte of sequence data and performed 0.5 trillion similarity searches. With a lower bound for identification of 2 viral genomes/100,000 cells, we mapped sequences to 94 different viruses, including sequences from 19 human DNA viruses, proviruses and RNA viruses (herpesviruses, anelloviruses, papillomaviruses, three polyomaviruses, adenovirus, HIV, HTLV, hepatitis B, hepatitis C, parvovirus B19, and influenza virus) in 42% of the study participants. Of possible relevance to transfusion medicine, we identified Merkel cell polyomavirus in 49 individuals, papillomavirus in blood of 13 individuals, parvovirus B19 in 6 individuals, and the presence of herpesvirus 8 in 3 individuals. The presence of DNA sequences from two RNA viruses was unexpected: Hepatitis C virus is revealing of an integration event, while the influenza virus sequence resulted from immunization with a DNA vaccine. Age, sex and ancestry contributed significantly to the prevalence of infection. The remaining 75 viruses mostly reflect extensive contamination of commercial reagents and from the environment. These technical problems represent a major challenge for the identification of novel human pathogens. Increasing availability of human whole-genome sequences will contribute substantial amounts of data on the composition of the normal and pathogenic human blood virome. Distinguishing contaminants from real human viruses is challenging.


Assuntos
Sangue/virologia , Viroses/epidemiologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Criança , Pré-Escolar , DNA Viral/sangue , Feminino , Humanos , Lactente , Masculino , Pessoa de Meia-Idade , Prevalência , Adulto Jovem
6.
Cancer Prev Res (Phila) ; 10(4): 226-234, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28096237

RESUMO

Recent scientific advances have significantly contributed to our understanding of the complex connection between the microbiome and cancer. Our bodies are continuously exposed to microbial cells, both resident and transient, as well as their byproducts, including toxic metabolites. Circulation of toxic metabolites may contribute to cancer onset or progression at locations distant from where a particular microbe resides. Moreover, microbes may migrate to other locations in the human body and become associated with tumor development. Several case-control metagenomics studies suggest that dysbiosis in the commensal microbiota is also associated with inflammatory disorders and various cancer types throughout the body. Although the microbiome influences carcinogenesis through mechanisms independent of inflammation and immune system, the most recognizable link is between the microbiome and cancer via the immune system, as the resident microbiota plays an essential role in activating, training, and modulating the host immune response. Immunologic dysregulation is likely to provide mechanistic explanations as to how our microbiome influences cancer development and cancer therapies. In this review, we discuss recent developments in understanding the human gut microbiome's relationship with cancer and the feasibility of developing novel cancer diagnostics based on microbiome profiles. Cancer Prev Res; 10(4); 226-34. ©2017 AACR.


Assuntos
Microbioma Gastrointestinal , Neoplasias/microbiologia , Humanos
7.
Proc Natl Acad Sci U S A ; 107(37): 16184-9, 2010 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-20733077

RESUMO

Prochlorococcus describes a diverse and abundant genus of marine photosynthetic microbes. It is primarily found in oligotrophic waters across the globe and plays a crucial role in energy and nutrient cycling in the ocean ecosystem. The abundance, global distribution, and availability of isolates make Prochlorococcus a model system for understanding marine microbial diversity and biogeochemical cycling. Analysis of 73 metagenomic samples from the Global Ocean Sampling expedition acquired in the Atlantic, Pacific, and Indian Oceans revealed the presence of two uncharacterized Prochlorococcus clades. A phylogenetic analysis using six different genetic markers places the clades close to known lineages adapted to high-light environments. The two uncharacterized clades consistently cooccur and dominate the surface waters of high-temperature, macronutrient-replete, and low-iron regions of the Eastern Equatorial Pacific upwelling and the tropical Indian Ocean. They are genetically distinct from each other and other high-light Prochlorococcus isolates and likely define a previously unrecognized ecotype. Our detailed genomic analysis indicates that these clades comprise organisms that are adapted to iron-depleted environments by reducing their iron quota through the loss of several iron-containing proteins that likely function as electron sinks in the photosynthetic pathway in other Prochlorococcus clades from high-light environments. The presence and inferred physiology of these clades may explain why Prochlorococcus populations from iron-depleted regions do not respond to iron fertilization experiments and further expand our understanding of how phytoplankton adapt to variations in nutrient availability in the ocean.


Assuntos
Ferro/metabolismo , Prochlorococcus/isolamento & purificação , Biodiversidade , Genoma Bacteriano , Oceanos e Mares , Filogenia , Prochlorococcus/genética , Prochlorococcus/metabolismo
8.
Proc Natl Acad Sci U S A ; 106(6): 1886-91, 2009 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-19181860

RESUMO

We have identified new genomic alterations in the breast cancer cell line HCC1954, using high-throughput transcriptome sequencing. With 120 Mb of cDNA sequences, we were able to identify genomic rearrangement events leading to fusions or truncations of genes including MRE11 and NSD1, genes already implicated in oncogenesis, and 7 rearrangements involving other additional genes. This approach demonstrates that high-throughput transcriptome sequencing is an effective strategy for the characterization of genomic rearrangements in cancers.


Assuntos
Neoplasias da Mama/genética , Perfilação da Expressão Gênica/métodos , Rearranjo Gênico , Genoma Humano/genética , Sequência de Bases , Proteínas de Transporte/genética , Linhagem Celular Tumoral , DNA Complementar , Proteínas de Ligação a DNA/genética , Feminino , Histona-Lisina N-Metiltransferase , Humanos , Proteína Homóloga a MRE11 , Proteínas de Neoplasias/genética , Proteínas Nucleares/genética
9.
Proc Natl Acad Sci U S A ; 102(40): 14344-9, 2005 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-16186508

RESUMO

It is now clear that tyrosine kinases represent attractive targets for therapeutic intervention in cancer. Recent advances in DNA sequencing technology now provide the opportunity to survey mutational changes in cancer in a high-throughput and comprehensive manner. Here we report on the sequence analysis of members of the receptor tyrosine kinase (RTK) gene family in the genomes of glioblastoma brain tumors. Previous studies have identified a number of molecular alterations in glioblastoma, including amplification of the RTK epidermal growth factor receptor. We have identified mutations in two other RTKs: (i) fibroblast growth receptor 1, including the first mutations in the kinase domain in this gene observed in any cancer, and (ii) a frameshift mutation in the platelet-derived growth factor receptor-alpha gene. Fibroblast growth receptor 1, platelet-derived growth factor receptor-alpha, and epidermal growth factor receptor are all potential entry points to the phosphatidylinositol 3-kinase and mitogen-activated protein kinase intracellular signaling pathways already known to be important for neoplasia. Our results demonstrate the utility of applying DNA sequencing technology to systematically assess the coding sequence of genes within cancer genomes.


Assuntos
Neoplasias Encefálicas/genética , Evolução Molecular , Glioblastoma/genética , Modelos Moleculares , Mutação/genética , Receptores Proteína Tirosina Quinases/genética , Adulto , Sequência de Aminoácidos , Sequência de Bases , Criança , Feminino , Genômica/métodos , Humanos , Masculino , Modelos Genéticos , Dados de Sequência Molecular , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/genética , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/genética , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA