Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Mol Cancer Ther ; 16(10): 2315-2323, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28637716

RESUMO

MAPK pathway activation is frequently observed in human malignancies, including melanoma, and is associated with sensitivity to MEK inhibition and changes in cellular metabolism. Using quantitative mass spectrometry-based metabolomics, we identified in preclinical models 21 plasma metabolites including amino acids, propionylcarnitine, phosphatidylcholines, and sphingomyelins that were significantly altered in two B-RAF-mutant melanoma xenografts and that were reversed following a single dose of the potent and selective MEK inhibitor RO4987655. Treatment of non-tumor-bearing animals and mice bearing the PTEN-null U87MG human glioblastoma xenograft elicited plasma changes only in amino acids and propionylcarnitine. In patients with advanced melanoma treated with RO4987655, on-treatment changes of amino acids were observed in patients with disease progression and not in responders. In contrast, changes in phosphatidylcholines and sphingomyelins were observed in responders. Furthermore, pretreatment levels of seven lipids identified in the preclinical screen were statistically significantly able to predict objective responses to RO4987655. The RO4987655 treatment-related changes were greater than baseline physiological variability in nontreated individuals. This study provides evidence of a translational exo-metabolomic plasma readout predictive of clinical efficacy together with pharmacodynamic utility following treatment with a signal transduction inhibitor. Mol Cancer Ther; 16(10); 2315-23. ©2017 AACR.


Assuntos
Benzamidas/administração & dosagem , Biomarcadores Tumorais/sangue , Melanoma/tratamento farmacológico , Quinases de Proteína Quinase Ativadas por Mitógeno/sangue , Oxazinas/administração & dosagem , Animais , Linhagem Celular Tumoral , Humanos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Melanoma/sangue , Melanoma/patologia , Camundongos , Quinases de Proteína Quinase Ativadas por Mitógeno/antagonistas & inibidores , Mutação , Metástase Neoplásica , Inibidores de Proteínas Quinases/administração & dosagem , Proteínas Proto-Oncogênicas B-raf/genética , Ensaios Antitumorais Modelo de Xenoenxerto
2.
Mol Cell Proteomics ; 14(10): 2786-99, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26149442

RESUMO

The ability to accurately quantify proteins in formalin-fixed paraffin-embedded tissues using targeted mass spectrometry opens exciting perspectives for biomarker discovery. We have developed and evaluated a selectedreaction monitoring assay for the human receptor tyrosine-protein kinase erbB-2 (HER2) in formalin-fixed paraffin-embedded breast tumors. Peptide candidates were identified using an untargeted mass spectrometry approach in relevant cell lines. A multiplexed assay was developed for the six best candidate peptides and evaluated for linearity, precision and lower limit of quantification. Results showed a linear response over a calibration range of 0.012 to 100 fmol on column (R(2): 0.99-1.00).The lower limit of quantification was 0.155 fmol on column for all peptides evaluated. The six HER2 peptides were quantified by selected reaction monitoring in a cohort of 40 archival formalin-fixed paraffin-embedded tumor tissues from women with invasive breast carcinomas, which showed different levels of HER2 gene amplification as assessed by standard methods used in clinical pathology. The amounts of the six HER2 peptides were highly and significantly correlated with each other, indicating that peptide levels can be used as surrogates of protein amounts in formalin-fixed paraffin-embedded tissues. After normalization for sample size, selected reaction monitoring peptide measurements were able to correctly predict 90% of cases based on HER2 amplification as defined by the American Society of Clinical Oncology and College of American Pathologists. In conclusion, the developed assay showed good analytical performance and a high agreement with immunohistochemistry and fluorescence in situ hybridization data. This study demonstrated that selected reaction monitoring allows to accurately quantify protein expression in formalin-fixed paraffin-embedded tissues and represents therefore a powerful approach for biomarker discovery studies. The untargeted mass spectrometry data is available via ProteomeXchange whereas the quantification data by selected reaction monitoring is available on the Panorama Public website.


Assuntos
Neoplasias da Mama/metabolismo , Proteômica/métodos , Receptor ErbB-2/metabolismo , Feminino , Formaldeído , Humanos , Hibridização in Situ Fluorescente , Espectrometria de Massas , Inclusão em Parafina , Peptídeos/metabolismo , Fixação de Tecidos
3.
Clin Cancer Res ; 20(16): 4251-61, 2014 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-24947927

RESUMO

PURPOSE: This phase I expansion study assessed safety, pharmacodynamic effects, and antitumor activity of RO4987655, a pure MEK inhibitor, in selected patients with advanced solid tumor. EXPERIMENTAL DESIGN: We undertook a multicenter phase I two-part study (dose escalation and cohort expansion). Here, we present the part 2 expansion that included melanoma, non-small cell lung cancer (NSCLC), and colorectal cancer with oral RO4987655 administered continuously at recommended doses of 8.5 mg twice daily until progressive disease (PD). Sequential tumor sampling investigated multiple markers of pathway activation/tumor effects, including ERK phosphorylation and Ki-67 expression. BRAF and KRAS testing were implemented as selection criteria and broader tumor mutational analysis added. RESULTS: Ninety-five patients received RO4987655, including 18 BRAF-mutant melanoma, 23 BRAF wild-type melanoma, 24 KRAS-mutant NSCLC, and 30 KRAS-mutant colorectal cancer. Most frequent adverse events were rash, acneiform dermatitis, and gastrointestinal disorders, mostly grade 1/2. Four (24%) of 17 BRAF-mutated melanoma had partial response as did four (20%) of 20 BRAF wild-type melanoma and two (11%) of 18 KRAS-mutant NSCLC. All KRAS-mutant colorectal cancer developed PD. Paired tumor biopsies demonstrated reduced ERK phosphorylation among all cohorts but significant differences among cohorts in Ki-67 modulation. Sixty-nine percent showed a decrease in fluorodeoxyglucose uptake between baseline and day 15. Detailed mutational profiling confirmed RAS/RAF screening and identified additional aberrations (NRAS/non-BRAF melanomas; PIK3CA/KRAS colorectal cancer) without therapeutic implications. CONCLUSIONS: Safety profile of RO4987655 was comparable with other MEK inhibitors. Single-agent activity was observed in all entities except colorectal cancer. Evidence of target modulation and early biologic activity was shown among all indications independent of mutational status. Clin Cancer Res; 20(16); 4251-61. ©2014 AACR.


Assuntos
Benzamidas/uso terapêutico , MAP Quinase Quinase Quinases/antagonistas & inibidores , Mutação/genética , Neoplasias/tratamento farmacológico , Oxazinas/uso terapêutico , Proteínas Proto-Oncogênicas B-raf/genética , Proteínas Proto-Oncogênicas/genética , Proteínas ras/genética , Administração Oral , Adulto , Idoso , Idoso de 80 Anos ou mais , Benzamidas/farmacocinética , Classe I de Fosfatidilinositol 3-Quinases , Análise Mutacional de DNA , Feminino , Seguimentos , Humanos , Masculino , Pessoa de Meia-Idade , Estadiamento de Neoplasias , Neoplasias/genética , Neoplasias/patologia , Oxazinas/farmacocinética , Seleção de Pacientes , Fosfatidilinositol 3-Quinases/genética , Prognóstico , Proteínas Proto-Oncogênicas p21(ras) , Distribuição Tecidual , Adulto Jovem
4.
EJNMMI Res ; 4(1): 34, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26116108

RESUMO

BACKGROUND: Inhibition of mitogen-activated protein kinase (MEK, also known as MAPK2, MAPKK), a key molecule of the Ras/MAPK (mitogen-activated protein kinase) pathway, has shown promising effects on B-raf-mutated and some RAS (rat sarcoma)-activated tumors in clinical trials. The objective of this study is to examine the efficacy of a novel allosteric MEK inhibitor RO4987655 in K-ras-mutated human tumor xenograft models using [(18)F] FDG-PET imaging and proteomics technology. METHODS: [(18)F] FDG uptake was studied in human lung carcinoma xenografts from day 0 to day 9 of RO4987655 therapy using microPET Focus 120 (CTI Concorde Microsystems, Knoxville, TN, USA). The expression levels of GLUT1 and hexokinase 1 were examined using semi-quantitative fluorescent immunohistochemistry (fIHC). The in vivo effects of RO4987655 on MAPK/PI3K pathway components were assessed by reverse phase protein arrays (RPPA). RESULTS: We have observed modest metabolic decreases in tumor [(18)F] FDG uptake after MEK inhibition by RO4987655 as early as 2 h post-treatment. The greatest [(18)F] FDG decreases were found on day 1, followed by a rebound in [(18)F] FDG uptake on day 3 in parallel with decreasing tumor volumes. Molecular analysis of the tumors by fIHC did not reveal statistically significant correlations of GLUT1 and hexokinase 1 expressions with the [(18)F] FDG changes. RPPA signaling response profiling revealed not only down-regulation of pERK1/2, pMKK4, and pmTOR on day 1 after RO4987655 treatment but also significant up-regulation of pMEK1/2, pMEK2, pC-RAF, and pAKT on day 3. The up-regulation of these markers is interpreted to be indicative of a reactivation of the MAPK and activation of the compensatory PI3K pathway, which can also explain the rebound in [(18)F] FDG uptake following MEK inhibition with RO4987655 in the K-ras-mutated human tumor xenografts. CONCLUSIONS: We have performed the first preclinical evaluation of a new MEK inhibitor, RO4987655, using a combination of [(18)F] FDG-PET imaging and molecular proteomics. These results provide support for using preclinical [(18)F] FDG-PET imaging in early, non-invasive monitoring of the effects of MEK and perhaps other Ras/MAPK signaling pathway inhibitors, which should facilitate a wider implementation of clinical [(18)F] FDG-PET to optimize their clinical use.

5.
Mol Cell Proteomics ; 12(9): 2615-22, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23653450

RESUMO

Reverse-phase protein arrays (RPPAs) have become an important tool for the sensitive and high-throughput detection of proteins from minute amounts of lysates from cell lines and cryopreserved tissue. The current standard method for tissue preservation in almost all hospitals worldwide is formalin fixation and paraffin embedding, and it would be highly desirable if RPPA could also be applied to formalin-fixed and paraffin embedded (FFPE) tissue. We investigated whether the analysis of FFPE tissue lysates with RPPA would result in biologically meaningful data in two independent studies. In the first study on breast cancer samples, we assessed whether a human epidermal growth factor receptor (HER) 2 score based on immunohistochemistry (IHC) could be reproduced with RPPA. The results showed very good concordance between the IHC and RPPA classifications of HER2 expression. In the second study, we profiled FFPE tumor specimens from patients with adenocarcinoma and squamous cell carcinoma in order to find new markers for differentiating these two subtypes of non-small cell lung cancer. p21-activated kinase 2 could be identified as a new differentiation marker for squamous cell carcinoma. Overall, the results demonstrate the technical feasibility and the merits of RPPA for protein expression profiling in FFPE tissue lysates.


Assuntos
Neoplasias da Mama/metabolismo , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Formaldeído/química , Neoplasias Pulmonares/metabolismo , Inclusão em Parafina , Análise Serial de Proteínas/métodos , Fixação de Tecidos , Western Blotting , Neoplasias da Mama/patologia , Carcinoma Pulmonar de Células não Pequenas/patologia , Feminino , Humanos , Imuno-Histoquímica , Hibridização in Situ Fluorescente , Neoplasias Pulmonares/patologia , Modelos Biológicos , Proteínas de Neoplasias/metabolismo , Receptor ErbB-2/metabolismo , Coloração e Rotulagem
6.
N Biotechnol ; 29(6): 651-5, 2012 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-22484859

RESUMO

Predictive biomarkers are discovered and used in oncology research to formulate hypotheses aimed at the identification of patients benefiting from specific therapeutic intervention(s). They pave the way to the development of companion diagnostic tests which are tools readily implemented in the clinic and serve to qualify a patient for treatment with a particular targeted drug or the continued use of a particular drug, thus maximizing the benefit to risk ratio of the medical intervention to the patient. Predictive biomarkers are defined by biological characteristics of the patient's or tumor status that can be measured objectively and correlated with clinical outcome: these can be molecular, cellular or biochemical features. Predictive markers need extensive analytical validation - specific for the tool utilized for their assessment - as well as rigorous clinical qualification in the context of the drug treatment for which they define clinical utility. The process of companion diagnostic development is a highly interdisciplinary and complex one, driven by key crucial milestones and accompanying the same and typical process of a whole drug discovery and development continuum, from marker discovery and validation, assay development, clinical qualification until test approval and commercialization.


Assuntos
Biomarcadores Tumorais/metabolismo , Pesquisa Biomédica/métodos , Técnicas de Diagnóstico Molecular/métodos , Neoplasias/diagnóstico , Humanos , Reprodutibilidade dos Testes , Pesquisa Translacional Biomédica
7.
Toxicol Pathol ; 35(7): 972-83, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18098043

RESUMO

Protein-kinase inhibitors are among the most advanced compounds in development using the new drug discovery paradigm of developing small-molecule drugs against specific molecular targets in cancer. After treatment with a cyclin dependent kinase CDK2 inhibitor in monkey, histopathological analysis of the eye showed specific cellular damage in the photoreceptor layer. Since this CDK2 inhibitor showed activity also on other CDKs, in order to investigate the mechanism of toxicity of this compound, we isolated cones and rods from the retina of normal monkey and humans by Laser Capture Microdissection. Using Real-Time PCR we first measured the expression of cyclin dependent protein-kinases (CDK)1, 2, 4, 5, Glycogen synthase kinase 3beta (GSK3beta) and microtubule associated protein TAU. We additionally verified the presence of these proteins in monkey eye sections by immuno-histochemistry and immunofluorescence analysis and afterwards quantified GSK3beta, phospho-GSK3beta and TAU by Reverse Phase Protein Microarrays. With this work we demonstrate how complementary gene expression and protein-based technologies constitute a powerful tool for the understanding of the molecular mechanism of a CDK2 inhibitor induced toxicity. Moreover, this investigative approach is helpful to better understand and characterize the mechanism of species-specific toxicities and further support a rational, molecular mechanism-based safety assessment in humans.


Assuntos
Quinase 2 Dependente de Ciclina/antagonistas & inibidores , Inibidores de Proteínas Quinases/toxicidade , Proteínas Serina-Treonina Quinases/análise , Retina/efeitos dos fármacos , Retina/enzimologia , Animais , Feminino , Imunofluorescência , Quinase 3 da Glicogênio Sintase/análise , Glicogênio Sintase Quinase 3 beta , Humanos , Imuno-Histoquímica , Macaca fascicularis , Masculino , Microdissecção , Fosforilação , Reação em Cadeia da Polimerase , Retina/patologia , Proteínas tau/análise
8.
J Virol ; 76(14): 7293-305, 2002 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-12072528

RESUMO

We have analyzed the unique epitope for the broadly neutralizing human monoclonal antibody (MAb) 2G12 on the gp120 surface glycoprotein of human immunodeficiency virus type 1 (HIV-1). Sequence analysis, focusing on the conservation of relevant residues across multiple HIV-1 isolates, refined the epitope that was defined previously by substitutional mutagenesis (A. Trkola, M. Purtscher, T. Muster, C. Ballaun, A. Buchacher, N. Sullivan, K. Srinivasan, J. Sodroski, J. P. Moore, and H. Katinger, J. Virol. 70:1100-1108, 1996). In a biochemical study, we digested recombinant gp120 with various glycosidase enzymes of known specificities and showed that the 2G12 epitope is lost when gp120 is treated with mannosidases. Computational analyses were used to position the epitope in the context of the virion-associated envelope glycoprotein complex, to determine the variability of the surrounding surface, and to calculate the surface accessibility of possible glycan- and polypeptide-epitope components. Together, these analyses suggest that the 2G12 epitope is centered on the high-mannose and/or hybrid glycans of residues 295, 332, and 392, with peripheral glycans from 386 and 448 on either flank. The epitope is mannose dependent and composed primarily of carbohydrate, with probably no direct involvement of the gp120 polypeptide surface. It resides on a face orthogonal to the CD4 binding face, on a surface proximal to, but distinct from, that implicated in coreceptor binding. Its conservation amidst an otherwise highly variable gp120 surface suggests a functional role for the 2G12 binding site, perhaps related to the mannose-dependent attachment of HIV-1 to DC-SIGN or related lectins that facilitate virus entry into susceptible target cells.


Assuntos
Anticorpos Monoclonais/imunologia , Mapeamento de Epitopos , Anticorpos Anti-HIV/imunologia , Proteína gp120 do Envelope de HIV/imunologia , Manose/química , Sequência de Carboidratos , Glicosídeo Hidrolases/metabolismo , Glicosilação , Proteína gp120 do Envelope de HIV/química , Proteína gp120 do Envelope de HIV/genética , HIV-1/imunologia , Humanos , Manose/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Testes de Neutralização , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA