Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 16(5): e0250518, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34033669

RESUMO

Gestational trophoblastic disease (GTD) is a heterogeneous group of lesions arising from placental tissue. Epithelioid trophoblastic tumor (ETT), derived from chorionic-type trophoblast, is the rarest form of GTD with only approximately 130 cases described in the literature. Due to its morphologic mimicry of epithelioid smooth muscle tumors and carcinoma, ETT can be misdiagnosed. To date, molecular characterization of ETTs is lacking. Furthermore, ETT is difficult to treat when disease spreads beyond the uterus. Here using RNA-Seq analysis in a cohort of ETTs and other gestational trophoblastic lesions we describe the discovery of LPCAT1-TERT fusion transcripts that occur in ETTs and coincide with underlying genomic deletions. Through cell-growth assays we demonstrate that LPCAT1-TERT fusion proteins can positively modulate cell proliferation and therefore may represent future treatment targets. Furthermore, we demonstrate that TERT upregulation appears to be a characteristic of ETTs, even in the absence of LPCAT1-TERT fusions, and that it appears linked to copy number gains of chromosome 5. No evidence of TERT upregulation was identified in other trophoblastic lesions tested, including placental site trophoblastic tumors and placental site nodules, which are thought to be the benign chorionic-type trophoblast counterpart to ETT. These findings indicate that LPCAT1-TERT fusions and copy-number driven TERT activation may represent novel markers for ETT, with the potential to improve the diagnosis, treatment, and outcome for women with this rare form of GTD.


Assuntos
1-Acilglicerofosfocolina O-Aciltransferase/genética , Células Epitelioides/patologia , Doença Trofoblástica Gestacional/etiologia , Proteínas de Fusão Oncogênica/genética , Telomerase/genética , Neoplasias Trofoblásticas/patologia , Neoplasias Uterinas/patologia , 1-Acilglicerofosfocolina O-Aciltransferase/metabolismo , Adulto , Biomarcadores Tumorais/genética , Proliferação de Células , Células Epitelioides/metabolismo , Feminino , Doença Trofoblástica Gestacional/patologia , Humanos , Pessoa de Meia-Idade , Proteínas de Fusão Oncogênica/metabolismo , Gravidez , Telomerase/metabolismo , Neoplasias Trofoblásticas/genética , Neoplasias Trofoblásticas/metabolismo , Neoplasias Uterinas/genética , Neoplasias Uterinas/metabolismo
2.
Artigo em Inglês | MEDLINE | ID: mdl-29162652

RESUMO

Synchronous endometrial and ovarian (SEO) carcinomas involve endometrioid neoplasms in both the ovary and uterus at the time of diagnosis. Patients were traditionally classified as having independent primary SEO lesions or as having metastatic endometrioid carcinoma. Recent studies have supported that SEO tumors result from the dissemination of cells from one organ site to another. However, whether this can be considered a "metastasis" or "dissemination" remains unclear. In this report, we performed whole-exome sequencing of tumor samples from a woman with well-differentiated endometrioid SEO tumors and a clinical "recurrent" poorly differentiated peritoneal tumor that was diagnosed 8 years after the complete resection of the SEO tumors. Somatic mutation analysis identified 132, 171, and 1214 nonsynonymous mutations in the endometrial, ovarian, and peritoneal carcinomas, respectively. A unique mutation signature associated with mismatch repair deficiency was observed in all three tumors. The SEO carcinomas shared 57 nonsynonymous mutations, whereas the clinically suspected recurrent carcinoma shared only eight nonsynonymous mutations with the SEO tumors. One of the eight shared somatic mutations involved PTEN; these shared mutations represent the earliest genetic alteration in the ancestor cell clone. Based on analysis of the phylogenetic tree, we predicted that the so-called recurrent peritoneal tumor was derived from the same endometrial ancestor clone as the SEO tumors, and that this clone migrated and established benign peritoneal endometriosis where the peritoneal tumor later arose. This case highlights the usefulness of next-generation sequencing in defining the etiology and clonal relationships of synchronous and metachronous tumors from patients, thus providing valuable insight to aid in the clinical management of rare or ambiguous tumors.


Assuntos
Neoplasias do Endométrio/genética , Sequenciamento do Exoma/métodos , Carcinoma Epitelial do Ovário , Células Clonais/patologia , Análise Mutacional de DNA/métodos , Neoplasias do Endométrio/patologia , Feminino , Humanos , Mutação INDEL/genética , Perda de Heterozigosidade , Pessoa de Meia-Idade , Mutação , Recidiva Local de Neoplasia/genética , Neoplasias Epiteliais e Glandulares/genética , Neoplasias Primárias Múltiplas/genética , Segunda Neoplasia Primária/genética , Neoplasias Ovarianas/genética , PTEN Fosfo-Hidrolase/genética , Polimorfismo de Nucleotídeo Único/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA