Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Exp Bot ; 72(6): 2231-2241, 2021 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-33188427

RESUMO

Iron (Fe) is a poorly available mineral nutrient which affects the outcome of many cross-kingdom interactions. In Arabidopsis thaliana, Fe starvation limits infection by necrotrophic pathogens. Here, we report that Fe deficiency also reduces disease caused by the hemi-biotrophic bacterium Pseudomonas syringae and the biotrophic oomycete Hyaloperonospora arabidopsidis, indicating that Fe deficiency-induced resistance is effective against pathogens with different lifestyles. Furthermore, we show that Fe deficiency-induced resistance is not caused by withholding Fe from the pathogen but is a plant-mediated defense response that requires activity of ethylene and salicylic acid. Because rhizobacteria-induced systemic resistance (ISR) is associated with a transient up-regulation of the Fe deficiency response, we tested whether Fe deficiency-induced resistance and ISR are similarly regulated. However, Fe deficiency-induced resistance functions independently of the ISR regulators MYB72 and BGLU42, indicating that both types of induced resistance are regulated in a different manner. Mutants opt3 and frd1, which display misregulated Fe homeostasis under Fe-sufficient conditions, show disease resistance levels comparable with those of Fe-starved wild-type plants. Our results suggest that disturbance of Fe homeostasis, through Fe starvation stress or other non-homeostatic conditions, is sufficient to prime the plant immune system for enhanced defense.


Assuntos
Proteínas de Arabidopsis , Arabidopsis/microbiologia , Deficiências de Ferro , Doenças das Plantas/microbiologia , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Resistência à Doença , Regulação da Expressão Gênica de Plantas , Pseudomonas syringae/patogenicidade , Ácido Salicílico
2.
Annu Rev Phytopathol ; 55: 355-375, 2017 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-28598721

RESUMO

Iron is an essential nutrient for most life on Earth because it functions as a crucial redox catalyst in many cellular processes. However, when present in excess iron can lead to the formation of harmful hydroxyl radicals. Hence, the cellular iron balance must be tightly controlled. Perturbation of iron homeostasis is a major strategy in host-pathogen interactions. Plants use iron-withholding strategies to reduce pathogen virulence or to locally increase iron levels to activate a toxic oxidative burst. Some plant pathogens counteract such defenses by secreting iron-scavenging siderophores that promote iron uptake and alleviate iron-regulated host immune responses. Mutualistic root microbiota can also influence plant disease via iron. They compete for iron with soil-borne pathogens or induce a systemic resistance that shares early signaling components with the root iron-uptake machinery. This review describes the progress in our understanding of the role of iron homeostasis in both pathogenic and beneficial plant-microbe interactions.


Assuntos
Interações Hospedeiro-Patógeno , Ferro/imunologia , Doenças das Plantas/imunologia , Doenças das Plantas/microbiologia , Imunidade Vegetal , Homeostase , Raízes de Plantas/microbiologia , Sideróforos , Simbiose
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA