Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Vis Exp ; (206)2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38738885

RESUMO

Adeno-associated viral vectors (AAVs) are a remarkable tool for investigating the central nervous system (CNS). Innovative capsids, such as AAV.PHP.eB, demonstrate extensive transduction of the CNS by intravenous injection in mice. To achieve comparable transduction, a 100-fold higher titer (minimally 1 x 1011 genome copies/mouse) is needed compared to direct injection in the CNS parenchyma. In our group, AAV production, including AAV.PHP.eB relies on adherent HEK293T cells and the triple transfection method. Achieving high yields of AAV with adherent cells entails a labor- and material-intensive process. This constraint prompted the development of a protocol for suspension-based cell culture in conical tubes. AAVs generated in adherent cells were compared to the suspension production method. Culture in suspension using transfection reagents Polyethylenimine or TransIt were compared. AAV vectors were purified by iodixanol gradient ultracentrifugation followed by buffer exchange and concentration using a centrifugal filter. With the adherent method, we achieved an average of 2.6 x 1012 genome copies (GC) total, whereas the suspension method and Polyethylenimine yielded 7.7 x 1012 GC in total, and TransIt yielded 2.4 x 1013 GC in total. There is no difference in in vivo transduction efficiency between vectors produced with adherent compared to the suspension cell system. In summary, a suspension HEK293 cell based AAV production protocol is introduced, resulting in a reduced amount of time and labor needed for vector production while achieving 3 to 9 times higher yields using components available from commercial vendors for research purposes.


Assuntos
Dependovirus , Vetores Genéticos , Humanos , Células HEK293 , Vetores Genéticos/genética , Dependovirus/genética , Transfecção/métodos , Camundongos , Animais
2.
Gene Ther ; 30(6): 503-519, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36635457

RESUMO

Recombinant adeno-associated viral vectors (AAVs) are an effective system for gene transfer. AAV serotype 2 (AAV2) is commonly used to deliver transgenes to retinal ganglion cells (RGCs) via intravitreal injection. The AAV serotype however is not the only factor contributing to the effectiveness of gene therapies. Promoters influence the strength and cell-selectivity of transgene expression. This study compares five promoters designed to maximise AAV2 cargo space for gene delivery: chicken ß-actin (CBA), cytomegalovirus (CMV), short CMV early enhancer/chicken ß-actin/short ß-globulin intron (sCAG), mouse phosphoglycerate kinase (PGK), and human synapsin (SYN). The promoters driving enhanced green fluorescent protein (eGFP) were examined in adult C57BL/6J mice eyes and tissues of the visual system. eGFP expression was strongest in the retina, optic nerves and brain when driven by the sCAG and SYN promoters. CBA, CMV, and PGK had moderate expression by comparison. The SYN promoter had almost exclusive transgene expression in RGCs. The PGK promoter had predominant expression in both RGCs and AII amacrine cells. The ubiquitous CBA, CMV, and sCAG promoters expressed eGFP in a variety of cell types across multiple retinal layers including Müller glia and astrocytes. We also found that these promoters could transduce human retina ex vivo, although expression was predominantly in glial cells due to low RGC viability. Taken together, this promoter comparison study contributes to optimising AAV-mediated transduction in the retina, and could be valuable for research in ocular disorders, particularly those with large or complex genetic cargos.


Assuntos
Infecções por Citomegalovirus , Parvovirinae , Camundongos , Animais , Humanos , Células Ganglionares da Retina/metabolismo , Actinas/genética , Actinas/metabolismo , Transdução Genética , Camundongos Endogâmicos C57BL , Transgenes , Dependovirus/genética , Dependovirus/metabolismo , Parvovirinae/genética , Proteínas de Fluorescência Verde/genética , Infecções por Citomegalovirus/genética , Infecções por Citomegalovirus/metabolismo , Vetores Genéticos/genética
3.
Hum Mol Genet ; 31(8): 1242-1262, 2022 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-34718572

RESUMO

The regeneration-associated gene (RAG) expression program is activated in injured peripheral neurons after axotomy and enables long-distance axon re-growth. Over 1000 genes are regulated, and many transcription factors are upregulated or activated as part of this response. However, a detailed picture of how RAG expression is regulated is lacking. In particular, the transcriptional targets and specific functions of the various transcription factors are unclear. Jun was the first-regeneration-associated transcription factor identified and the first shown to be functionally important. Here we fully define the role of Jun in the RAG expression program in regenerating facial motor neurons. At 1, 4 and 14 days after axotomy, Jun upregulates 11, 23 and 44% of the RAG program, respectively. Jun functions relevant to regeneration include cytoskeleton production, metabolic functions and cell activation, and the downregulation of neurotransmission machinery. In silico analysis of promoter regions of Jun targets identifies stronger over-representation of AP1-like sites than CRE-like sites, although CRE sites were also over-represented in regions flanking AP1 sites. Strikingly, in motor neurons lacking Jun, an alternative SRF-dependent gene expression program is initiated after axotomy. The promoters of these newly expressed genes exhibit over-representation of CRE sites in regions near to SRF target sites. This alternative gene expression program includes plasticity-associated transcription factors and leads to an aberrant early increase in synapse density on motor neurons. Jun thus has the important function in the early phase after axotomy of pushing the injured neuron away from a plasticity response and towards a regenerative phenotype.


Assuntos
Axônios , Regeneração Nervosa , Axônios/metabolismo , Axotomia , Neurônios Motores/metabolismo , Regeneração Nervosa/genética , Proteínas Proto-Oncogênicas c-jun/genética , Proteínas Proto-Oncogênicas c-jun/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
4.
Cells ; 10(6)2021 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-34070547

RESUMO

Mesenchymal stromal cells (MSC) are used for cell therapy for spinal cord injury (SCI) because of their ability to support tissue repair by paracrine signaling. Preclinical and clinical research testing MSC transplants for SCI have revealed limited success, which warrants the exploration of strategies to improve their therapeutic efficacy. MSC are sensitive to the microenvironment and their secretome can be altered in vitro by exposure to different culture media. Priming MSC with inflammatory stimuli increases the expression and secretion of reparative molecules. We studied the effect of macrophage-derived inflammation priming on MSC transplants and of primed MSC (pMSC) acute transplants (3 days) on spinal cord repair using an adult rat model of moderate-severe contusive SCI. We found a decrease in long-term survival of pMSC transplants compared with unprimed MSC transplants. With a pMSC transplant, we found significantly more anti-inflammatory macrophages in the contusion at 4 weeks post transplantation (wpt). Blood vessel presence and maturation in the contusion at 1 wpt was similar in rats that received pMSC or untreated MSC. Nervous tissue sparing and functional recovery were similar across groups. Our results indicate that macrophage-derived inflammation priming does not increase the overall therapeutic potential of an MSC transplant in the adult rat contused spinal cord.


Assuntos
Terapia Baseada em Transplante de Células e Tecidos/métodos , Macrófagos/citologia , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/citologia , Traumatismos da Medula Espinal/terapia , Animais , Células Cultivadas , Técnicas de Cocultura , Feminino , Ratos , Ratos Sprague-Dawley
5.
PLoS One ; 16(4): e0249748, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33848304

RESUMO

A human neuroma-in continuity (NIC), formed following a peripheral nerve lesion, impedes functional recovery. The molecular mechanisms that underlie the formation of a NIC are poorly understood. Here we show that the expression of multiple genes of the Wnt family, including Wnt5a, is changed in NIC tissue from patients that underwent reconstructive surgery. The role of Wnt ligands in NIC pathology and nerve regeneration is of interest because Wnt ligands are implicated in tissue regeneration, fibrosis, axon repulsion and guidance. The observations in NIC prompted us to investigate the expression of Wnt ligands in the injured rat sciatic nerve and in the dorsal root ganglia (DRG). In the injured nerve, four gene clusters were identified with temporal expression profiles corresponding to particular phases of the regeneration process. In the DRG up- and down regulation of certain Wnt receptors suggests that nerve injury has an impact on the responsiveness of injured sensory neurons to Wnt ligands in the nerve. Immunohistochemistry showed that Schwann cells in the NIC and in the injured nerve are the source of Wnt5a, whereas the Wnt5a receptor Ryk is expressed by axons traversing the NIC. Taken together, these observations suggest a central role for Wnt signalling in peripheral nerve regeneration.


Assuntos
Gânglios Espinais/metabolismo , Regeneração Nervosa/fisiologia , Traumatismos dos Nervos Periféricos/metabolismo , Nervo Isquiático/metabolismo , Células Receptoras Sensoriais/metabolismo , Via de Sinalização Wnt , Animais , Modelos Animais de Doenças , Feminino , Gânglios Espinais/patologia , Regulação da Expressão Gênica , Humanos , Traumatismos dos Nervos Periféricos/genética , Traumatismos dos Nervos Periféricos/patologia , Ratos , Ratos Wistar , Nervo Isquiático/patologia , Células Receptoras Sensoriais/patologia
6.
Alzheimers Res Ther ; 13(1): 45, 2021 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-33597019

RESUMO

BACKGROUND: Dysregulation of ceramide and sphingomyelin levels have been suggested to contribute to the pathogenesis of Alzheimer's disease (AD). Ceramide transfer proteins (CERTs) are ceramide carriers which are crucial for ceramide and sphingomyelin balance in cells. Extracellular forms of CERTs co-localize with amyloid-ß (Aß) plaques in AD brains. To date, the significance of these observations for the pathophysiology of AD remains uncertain. METHODS: A plasmid expressing CERTL, the long isoform of CERTs, was used to study the interaction of CERTL with amyloid precursor protein (APP) by co-immunoprecipitation and immunofluorescence in HEK cells. The recombinant CERTL protein was employed to study interaction of CERTL with amyloid-ß (Aß), Aß aggregation process in presence of CERTL, and the resulting changes in Aß toxicity in neuroblastoma cells. CERTL was overexpressed in neurons by adeno-associated virus (AAV) in a mouse model of familial AD (5xFAD). Ten weeks after transduction, animals were challenged with behavior tests for memory, anxiety, and locomotion. At week 12, brains were investigated for sphingolipid levels by mass spectrometry, plaques, and neuroinflammation by immunohistochemistry, gene expression, and/or immunoassay. RESULTS: Here, we report that CERTL binds to APP, modifies Aß aggregation, and reduces Aß neurotoxicity in vitro. Furthermore, we show that intracortical injection of AAV, mediating the expression of CERTL, decreases levels of ceramide d18:1/16:0 and increases sphingomyelin levels in the brain of male 5xFAD mice. CERTL in vivo over-expression has a mild effect on animal locomotion, decreases Aß formation, and modulates microglia by decreasing their pro-inflammatory phenotype. CONCLUSION: Our results demonstrate a crucial role of CERTL in regulating ceramide levels in the brain, in amyloid plaque formation and neuroinflammation, thereby opening research avenues for therapeutic targets of AD and other neurodegenerative diseases.


Assuntos
Doença de Alzheimer , Doença de Alzheimer/genética , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Encéfalo/metabolismo , Ceramidas , Modelos Animais de Doenças , Inflamação , Masculino , Camundongos , Camundongos Transgênicos , Placa Amiloide
7.
Int J Mol Sci ; 22(2)2021 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-33466704

RESUMO

Pre-clinical and clinical studies revealed that mesenchymal stromal cell (MSC) transplants elicit tissue repair. Conditioning MSC prior to transplantation may boost their ability to support repair. We investigated macrophage-derived inflammation as a means to condition MSC by comprehensively analyzing their transcriptome and secretome. Conditioning MSC with macrophage-derived inflammation resulted in 3208 differentially expressed genes, which were annotated with significantly enriched GO terms for 1085 biological processes, 85 cellular components, and 79 molecular functions. Inflammation-mediated conditioning increased the secretion of growth factors that are key for tissue repair, including vascular endothelial growth factor, hepatocyte growth factor, nerve growth factor and glial-derived neurotrophic factor. Furthermore, we found that inflammation-mediated conditioning induces transcriptomic changes that challenge the viability and mobility of MSC. Our data support the notion that macrophage-derived inflammation stimulates MSC to augment their paracrine repair-supporting activity. The results suggest that inflammatory pre-conditioning enhances the therapeutic potential of MSC transplants.


Assuntos
Inflamação/metabolismo , Macrófagos/metabolismo , Células-Tronco Mesenquimais/metabolismo , Transcriptoma , Animais , Movimento Celular , Sobrevivência Celular , Células Cultivadas , Feminino , Ontologia Genética , Macrófagos/citologia , Células-Tronco Mesenquimais/citologia , Ratos Sprague-Dawley
8.
Gene Ther ; 28(1-2): 56-74, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32576975

RESUMO

Adeno-associated viral vectors are widely used as vehicles for gene transfer to the nervous system. The promoter and viral vector serotype are two key factors that determine the expression dynamics of the transgene. A previous comparative study has demonstrated that AAV1 displays efficient transduction of layer V corticospinal neurons, but the optimal promoter for transgene expression in corticospinal neurons has not been determined yet. In this paper, we report a side-by-side comparison between four commonly used promoters: the short CMV early enhancer/chicken ß actin (sCAG), human cytomegalovirus (hCMV), mouse phosphoglycerate kinase (mPGK) and human synapsin (hSYN) promoter. Reporter constructs with each of these promoters were packaged in AAV1, and were injected in the sensorimotor cortex of rats and mice in order to transduce the corticospinal tract. Transgene expression levels and the cellular transduction profile were examined after 6 weeks. The AAV1 vectors harbouring the hCMV and sCAG promoters resulted in transgene expression in neurons, astrocytes and oligodendrocytes. The mPGK and hSYN promoters directed the strongest transgene expression. The mPGK promoter did drive expression in cortical neurons and oligodendrocytes, while transduction with AAV harbouring the hSYN promoter resulted in neuron-specific expression, including perineuronal net expressing interneurons and layer V corticospinal neurons. This promoter comparison study contributes to improve transgene delivery into the brain and spinal cord. The optimized transduction of the corticospinal tract will be beneficial for spinal cord injury research.


Assuntos
Dependovirus , Tratos Piramidais , Animais , Dependovirus/genética , Vetores Genéticos/genética , Camundongos , Regiões Promotoras Genéticas , Ratos , Transdução Genética , Transgenes
9.
Exp Neurol ; 330: 113355, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32422148

RESUMO

Large peripheral nerve (PN) defects require bridging substrates to restore tissue continuity and permit the regrowth of sensory and motor axons. We previously showed that cell-free PN segments repopulated ex vivo with Schwann cells (SCs) transduced with lentiviral vectors (LV) to express different growth factors (BDNF, CNTF or NT-3) supported the regeneration of axons across a 1 cm peroneal nerve defect (Godinho et al., 2013). Graft morphology, the number of regrown axons, the ratio of myelinated to unmyelinated axons, and hindlimb locomotor function differed depending on the growth factor engineered into SCs. Here we extend these observations, adding more LVs (expressing GDNF or NGF) and characterising regenerating sensory and motor neurons after injection of the retrograde tracer Fluorogold (FG) into peroneal nerve distal to grafts, 10 weeks after surgery. Counts were also made in rats with intact nerves and in animals receiving autografts, acellular grafts, or grafts containing LV-GFP transduced SCs. Counts and analysis of FG positive (+) DRG neurons were made from lumbar (L5) ganglia. Graft groups contained fewer labeled sensory neurons than non-operated controls, but this decrease was only significant in the LV-GDNF group. These grafts had a complex fascicular morphology that may have resulted in axon trapping. The proportion of FG+ sensory neurons immunopositive for calcitonin-gene related peptide (CGRP) varied between groups, there being a significantly higher percentage in autografts and most neurotrophic factor groups compared to the LV-CNTF, LV-GFP and acellular groups. Furthermore, the proportion of regenerating isolectin B4+ neurons was significantly greater in the LV-NT-3 group compared to other groups, including autografts and non-lesion controls. Immunohistochemical analysis of longitudinal graft sections revealed that all grafts contained a reduced number of choline acetyltransferase (ChAT) positive axons, but this decrease was significant only in the GDNF and NT-3 graft groups. We also assessed the number and phenotype of regrowing lumbar FG+ motor neurons in non-lesioned animals, and in rats with autografts, acellular grafts, or in grafts containing SCs expressing GFP, CNTF, NGF or NT-3. The overall number of FG+ motor neurons per section was similar in all groups; however in tissue immunostained for NeuN (expressed in α- but not γ-motor neurons) the proportion of NeuN negative FG+ neurons ranged from about 40-50% in all groups except the NT-3 group, where the percentage was 82%, significantly more than the SC-GFP group. Immunostaining for the vesicular glutamate transporter VGLUT-1 revealed occasional proprioceptive terminals in 'contact' with regenerating FG+ α-motor neurons in PN grafted animals, the acellular group having the lowest counts. In sum, while all graft types supported sensory and motor axon regrowth, there appeared to be axon trapping in SC-GDNF grafts, and data from the SC-NT-3 group revealed greater regeneration of sensory CGRP+ and IB4+ neurons, preferential regeneration of γ-motor neurons and perhaps partial restoration of monosynaptic sensorimotor relays.


Assuntos
Regeneração Tecidual Guiada/métodos , Fatores de Crescimento Neural/metabolismo , Regeneração Nervosa/fisiologia , Nervo Fibular/transplante , Células de Schwann/metabolismo , Alicerces Teciduais , Animais , Axônios/fisiologia , Vetores Genéticos , Lentivirus , Masculino , Neurônios Motores/fisiologia , Ratos , Ratos Endogâmicos F344 , Células Receptoras Sensoriais/fisiologia
10.
PLoS Biol ; 18(4): e3000665, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32275651

RESUMO

The correct subcellular distribution of proteins establishes the complex morphology and function of neurons. Fluorescence microscopy techniques are invaluable to investigate subcellular protein distribution, but they suffer from the limited ability to efficiently and reliably label endogenous proteins with fluorescent probes. We developed ORANGE: Open Resource for the Application of Neuronal Genome Editing, which mediates targeted genomic integration of epitope tags in rodent dissociated neuronal culture, in organotypic slices, and in vivo. ORANGE includes a knock-in library for in-depth investigation of endogenous protein distribution, viral vectors, and a detailed two-step cloning protocol to develop knock-ins for novel targets. Using ORANGE with (live-cell) superresolution microscopy, we revealed the dynamic nanoscale organization of endogenous neurotransmitter receptors and synaptic scaffolding proteins, as well as previously uncharacterized proteins. Finally, we developed a mechanism to create multiple knock-ins in neurons, mediating multiplex imaging of endogenous proteins. Thus, ORANGE enables quantification of expression, distribution, and dynamics for virtually any protein in neurons at nanoscale resolution.


Assuntos
Sistemas CRISPR-Cas , Epitopos/genética , Edição de Genes/métodos , Neurônios/imunologia , Proteínas/genética , Animais , Células Cultivadas , Dependovirus/genética , Feminino , Técnicas de Introdução de Genes , Genes Reporter , Vetores Genéticos , Genoma , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Masculino , Camundongos Transgênicos , Microscopia de Fluorescência , Imagem Molecular/métodos , Neurônios/fisiologia , Técnicas de Cultura de Órgãos , Proteínas/imunologia , Proteínas/metabolismo , Ratos Wistar , Receptores de N-Metil-D-Aspartato/genética , Receptores de N-Metil-D-Aspartato/metabolismo , Análise Espaço-Temporal
11.
Mol Neurobiol ; 56(9): 5987-5997, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30706367

RESUMO

Perineuronal nets (PNNs) are condensed structures in the extracellular matrix that mainly surround GABA-ergic parvalbumin-positive interneurons in the adult brain. Previous studies revealed a parallel between PNN formation and the closure of the critical period. Moreover, ocular dominance plasticity is enhanced in response to PNN manipulations in adult animals. However, the mechanisms through which perineuronal nets modulate plasticity are still poorly understood. Recent work indicated that perineuronal nets may convey molecular signals by binding and storing proteins with important roles in cellular communication. Here we report that semaphorin3A (Sema3A), a chemorepulsive axon guidance cue known to bind to important perineuronal net components, is necessary to dampen ocular dominance plasticity in adult rats. First, we showed that the accumulation of Sema3A in PNNs in the visual cortex correlates with critical period closure, following the same time course of perineuronal nets maturation. Second, the accumulation of Sema3A in perineuronal nets was significantly reduced by rearing animals in the dark in the absence of any visual experience. Finally, we developed and characterized a tool to interfere with Sema3A signaling by means of AAV-mediated expression of receptor bodies, soluble proteins formed by the extracellular domain of the endogenous Sema3A receptor (neuropilin1) fused to a human IgG Fc fragment. By using this tool to antagonize Sema3A signaling in the adult rat visual cortex, we found that the specific inhibition of Sema3A promoted ocular dominance plasticity. Thus, Sema3A accumulates in perineuronal nets in an experience-dependent manner and its presence in the mature visual cortex inhibits plasticity.


Assuntos
Envelhecimento/fisiologia , Dominância Ocular/fisiologia , Semaforina-3A/antagonistas & inibidores , Córtex Visual/fisiologia , Animais , Cones de Crescimento/metabolismo , Células HEK293 , Humanos , Neurônios/metabolismo , Neuropilinas/metabolismo , Agregados Proteicos , Ratos , Semaforina-3A/metabolismo , Solubilidade , Fator A de Crescimento do Endotélio Vascular/metabolismo
12.
Dev Neurobiol ; 78(10): 926-951, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29717546

RESUMO

The neuron-intrinsic response to axonal injury differs markedly between neurons of the peripheral and central nervous system. Following a peripheral lesion, a robust axonal growth program is initiated, whereas neurons of the central nervous system do not mount an effective regenerative response. Increasing the neuron-intrinsic regenerative response would therefore be one way to promote axonal regeneration in the injured central nervous system. The large-diameter sensory neurons located in the dorsal root ganglia are pseudo-unipolar neurons that project one axon branch into the spinal cord, and, via the dorsal column to the brain stem, and a peripheral process to the muscles and skin. Dorsal root ganglion neurons are ideally suited to study the neuron-intrinsic injury response because they exhibit a successful growth response following peripheral axotomy, while they fail to do so after a lesion of the central branch in the dorsal column. The dorsal column injury model allows the neuron-intrinsic regeneration response to be studied in the context of a spinal cord injury. Here we will discuss the advantages and disadvantages of this model. We describe the surgical methods used to implement a lesion of the ascending fibers, the anatomy of the sensory afferent pathways and anatomical, electrophysiological, and behavioral techniques to quantify regeneration and functional recovery. Subsequently we review the results of experimental interventions in the dorsal column lesion model, with an emphasis on the molecular mechanisms that govern the neuron-intrinsic injury response and manipulations of these after central axotomy. Finally, we highlight a number of recent advances that will have an impact on the design of future studies in this spinal cord injury model, including the continued development of adeno-associated viral vectors likely to improve the genetic manipulation of dorsal root ganglion neurons and the use of tissue clearing techniques enabling 3D reconstruction of regenerating axon tracts. © 2018 The Authors. Developmental Neurobiology Published by Wiley Periodicals, Inc. Develop Neurobiol 00: 000-000, 2018.


Assuntos
Modelos Animais de Doenças , Gânglios Espinais/fisiopatologia , Expressão Gênica/fisiologia , Regeneração Nervosa/fisiologia , Neurônios/fisiologia , Traumatismos da Medula Espinal/fisiopatologia , Animais , Gânglios Espinais/patologia , Neurônios/metabolismo , Neurônios/patologia , Traumatismos da Medula Espinal/patologia
13.
Neurotherapeutics ; 15(3): 578-587, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29728851

RESUMO

Spinal cord injury results in destructive events that lead to tissue loss and functional impairments. A hallmark of spinal cord injury is the robust and persistent presence of inflammatory macrophages. Mesenchymal stem cells (MSCs) are known to benefit repair of the damaged spinal cord often associated with improved functional recovery. Transplanted MSCs immediately encounter the abundance of inflammatory macrophages in the injury site. It is known that MSCs interact closely and reciprocally with macrophages during tissue healing. Here, we will review the roles of (transplanted) MSCs and macrophages in spinal cord injury and repair. Molecular interactions between MSCs and macrophages and the deficiencies in our knowledge about the underlying mechanisms will be reviewed. We will discuss possible ways to benefit from the MSC-macrophage choreography for developing repair strategies for the spinal cord.


Assuntos
Comunicação Celular , Macrófagos/fisiologia , Células-Tronco Mesenquimais/fisiologia , Traumatismos da Medula Espinal/patologia , Traumatismos da Medula Espinal/fisiopatologia , Animais , Humanos
14.
Methods Mol Biol ; 1715: 3-17, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29188502

RESUMO

Adeno-associated viral vectors have numerous applications in neuroscience, including the study of gene function in health and disease, targeting of light-sensitive proteins to anatomically distinct sets of neurons to manipulate neuronal activity (optogenetics), and the delivery of fluorescent protein to study anatomical connectivity in the brain. Moreover several phase I/II clinical trials for gene therapy of eye and brain diseases with adeno-associated viral vectors have shown that these vectors are well tolerated by human patients. In this chapter we describe a detailed protocol for the small scale production of recombinant adeno-associated viral vectors. This protocol can be executed by investigators with experience in cell culture and molecular biological techniques in any well-equipped molecular neurobiology laboratory. With this protocol we typically obtain research batches of 100-200 µL that range in titer from 5 × 1012 to 2 × 1013 genomic copies/mL.


Assuntos
Encefalopatias/terapia , Dependovirus/genética , Técnicas de Transferência de Genes , Terapia Genética/métodos , Vetores Genéticos , Encefalopatias/genética , Oftalmopatias/genética , Oftalmopatias/terapia , Células HEK293 , Humanos , Injeções Intraoculares/métodos , Sistema Nervoso/metabolismo , Plasmídeos
15.
J Neurosci ; 37(39): 9361-9379, 2017 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-28842419

RESUMO

Repulsive guidance molecule member a (RGMa) is a membrane-associated or released guidance molecule that is involved in axon guidance, cell patterning, and cell survival. In our previous work, we showed that RGMa is significantly upregulated in the substantia nigra of patients with Parkinson's disease. Here we demonstrate the expression of RGMa in midbrain human dopaminergic (DA) neurons. To investigate whether RGMa might model aspects of the neuropathology of Parkinson's disease in mouse, we targeted RGMa to adult midbrain dopaminergic neurons using adeno-associated viral vectors. Overexpression of RGMa resulted in a progressive movement disorder, including motor coordination and imbalance, which is typical for a loss of DA release in the striatum. In line with this, RGMa induced selective degeneration of dopaminergic neurons in the substantia nigra (SN) and affected the integrity of the nigrostriatal system. The degeneration of dopaminergic neurons was accompanied by a strong microglia and astrocyte activation. The behavioral, molecular, and anatomical changes induced by RGMa in mice are remarkably similar to the clinical and neuropathological hallmarks of Parkinson's disease. Our data indicate that dysregulation of RGMa plays an important role in the pathology of Parkinson's disease, and antibody-mediated functional interference with RGMa may be a disease modifying treatment option.SIGNIFICANCE STATEMENT Parkinson's disease (PD) is a neurodegenerative disease characterized by severe motor dysfunction due to progressive degeneration of mesencephalic dopaminergic (DA) neurons in the substantia nigra. To date, there is no regenerative treatment available. We previously showed that repulsive guidance molecule member a (RGMa) is upregulated in the substantia nigra of PD patients. Adeno-associated virus-mediated targeting of RGMa to mouse DA neurons showed that overexpression of this repulsive axon guidance and cell patterning cue models the behavioral and neuropathological characteristics of PD in a remarkable way. These findings have implications for therapy development as interfering with the function of this specific axon guidance cue may be beneficial to the survival of DA neurons.


Assuntos
Proteínas do Tecido Nervoso/genética , Doença de Parkinson/metabolismo , Idoso , Idoso de 80 Anos ou mais , Animais , Linhagem Celular Tumoral , Neurônios Dopaminérgicos/metabolismo , Neurônios Dopaminérgicos/patologia , Feminino , Proteínas Ligadas por GPI/genética , Proteínas Ligadas por GPI/metabolismo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microglia/metabolismo , Microglia/patologia , Pessoa de Meia-Idade , Proteínas do Tecido Nervoso/metabolismo , Doença de Parkinson/genética , Doença de Parkinson/patologia , Doença de Parkinson/fisiopatologia , Substância Negra/metabolismo , Substância Negra/patologia
16.
eNeuro ; 3(4)2016.
Artigo em Inglês | MEDLINE | ID: mdl-27570822

RESUMO

The regenerative ability of CNS axons decreases with age, however, this ability remains largely intact in PNS axons throughout adulthood. These differences are likely to correspond with age-related silencing of proteins necessary for axon growth and elongation. In previous studies, it has been shown that reintroduction of the α9 integrin subunit (tenascin-C receptor, α9) that is downregulated in adult CNS can improve neurite outgrowth and sensory axon regeneration after a dorsal rhizotomy or a dorsal column crush spinal cord lesion. In the current study, we demonstrate that virally expressed integrins (α9, α6, or ß1 integrin) in the adult rat sensorimotor cortex and adult red nucleus are excluded from axons following neuronal transduction. Attempts to stimulate transport by inclusion of a cervical spinal injury and thus an upregulation of extracellular matrix molecules at the lesion site, or cotransduction with its binding partner, ß1 integrin, did not induce integrin localization within axons. In contrast, virally expressed α9 integrin in developing rat cortex (postnatal day 5 or 10) demonstrated clear localization of integrins in cortical axons revealed by the presence of integrin in the axons of the corpus callosum and internal capsule, as well as in the neuronal cell body. Furthermore, examination of dorsal root ganglia neurons and retinal ganglion cells demonstrated integrin localization both within peripheral nerve as well as dorsal root axons and within optic nerve axons, respectively. Together, our results suggest a differential ability for in vivo axonal transport of transmembrane proteins dependent on neuronal age and subtype.


Assuntos
Axônios/metabolismo , Encéfalo/metabolismo , Cadeias alfa de Integrinas/metabolismo , Integrina alfa6/metabolismo , Integrina beta1/metabolismo , Medula Espinal/metabolismo , Animais , Animais Recém-Nascidos , Encéfalo/citologia , Encéfalo/crescimento & desenvolvimento , Gânglios Espinais/citologia , Gânglios Espinais/crescimento & desenvolvimento , Gânglios Espinais/metabolismo , Vetores Genéticos , Cadeias alfa de Integrinas/genética , Integrina alfa6/genética , Integrina beta1/genética , Masculino , Nervo Óptico/citologia , Nervo Óptico/crescimento & desenvolvimento , Nervo Óptico/metabolismo , Ratos Endogâmicos Lew , Ratos Sprague-Dawley , Nervo Isquiático/citologia , Nervo Isquiático/crescimento & desenvolvimento , Nervo Isquiático/metabolismo , Medula Espinal/citologia , Medula Espinal/crescimento & desenvolvimento , Medula Espinal/patologia , Traumatismos da Medula Espinal/metabolismo , Traumatismos da Medula Espinal/patologia
17.
J Neurosci ; 36(27): 7283-97, 2016 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-27383601

RESUMO

UNLABELLED: After CNS injury, axon regeneration is blocked by an inhibitory environment consisting of the highly upregulated tenascin-C and chondroitin sulfate proteoglycans (CSPGs). Tenascin-C promotes growth of axons if they express a tenascin-binding integrin, particularly α9ß1. Additionally, integrins can be inactivated by CSPGs, and this inhibition can be overcome by the presence of a ß1-binding integrin activator, kindlin-1. We examined the synergistic effect of α9 integrin and kindlin-1 on sensory axon regeneration in adult rat spinal cord after dorsal root crush and adeno-associated virus transgene expression in dorsal root ganglia. After 12 weeks, axons from C6-C7 dorsal root ganglia regenerated through the tenascin-C-rich dorsal root entry zone into the dorsal column up to C1 level and above (>25 mm axon length) through a normal pathway. Animals also showed anatomical and electrophysiological evidence of reconnection to the dorsal horn and behavioral recovery in mechanical pressure, thermal pain, and ladder-walking tasks. Expression of α9 integrin or kindlin-1 alone promoted much less regeneration and recovery. SIGNIFICANCE STATEMENT: The study demonstrates that long-distance sensory axon regeneration over a normal pathway and with sensory and sensory-motor recovery can be achieved. This was achieved by expressing an integrin that recognizes tenascin-C, one of the components of glial scar tissue, and an integrin activator. This enabled extensive long-distance (>25 mm) regeneration of both myelinated and unmyelinated sensory axons with topographically correct connections in the spinal cord. The extent of growth and recovery we have seen would probably be clinically significant. Restoration of sensation to hands, perineum, and genitalia would be a significant improvement for a spinal cord-injured patient.


Assuntos
Axônios/fisiologia , Regulação da Expressão Gênica/fisiologia , Integrinas/metabolismo , Regeneração Nervosa/fisiologia , Traumatismos da Medula Espinal/fisiopatologia , Medula Espinal/citologia , Animais , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Células Cultivadas , Proteoglicanas de Sulfatos de Condroitina/metabolismo , Modelos Animais de Doenças , Feminino , Lateralidade Funcional , Gânglios Espinais/citologia , Integrinas/genética , Proteínas do Tecido Nervoso/metabolismo , Neuritos/fisiologia , Pressão , Ratos , Ratos Sprague-Dawley , Caminhada/fisiologia
18.
Eur J Neurosci ; 43(3): 318-35, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26415525

RESUMO

Root avulsions due to traction to the brachial plexus causes complete and permanent loss of function. Until fairly recent, such lesions were considered impossible to repair. Here we review clinical repair strategies and current progress in experimental ventral root avulsion lesions. The current gold standard in patients with a root avulsion is nerve transfer, whereas reimplantation of the avulsed root into the spinal cord has been performed in a limited number of cases. These neurosurgical repair strategies have significant benefit for the patient but functional recovery remains incomplete. Developing new ways to improve the functional outcome of neurosurgical repair is therefore essential. In the laboratory, the molecular and cellular changes following ventral root avulsion and the efficacy of intervention strategies have been studied at the level of spinal motoneurons, the ventral spinal root and peripheral nerve, and the skeletal muscle. We present an overview of cell-based pharmacological and neurotrophic factor treatment approaches that have been applied in combination with surgical reimplantation. These interventions all demonstrate neuroprotective effects on avulsed motoneurons, often accompanied with various degrees of axonal regeneration. However, effects on survival are usually transient and robust axon regeneration over long distances has as yet not been achieved. Key future areas of research include finding ways to further extend the post-lesion survival period of motoneurons, the identification of neuron-intrinsic factors which can promote persistent and long-distance axon regeneration, and finally prolonging the pro-regenerative state of Schwann cells in the distal nerve.


Assuntos
Regeneração Nervosa , Radiculopatia/terapia , Raízes Nervosas Espinhais/fisiopatologia , Animais , Terapia Genética/métodos , Humanos , Fármacos Neuroprotetores/uso terapêutico , Radiculopatia/patologia , Radiculopatia/fisiopatologia , Raízes Nervosas Espinhais/metabolismo , Transplante de Células-Tronco/métodos
19.
Skelet Muscle ; 5: 37, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26561520

RESUMO

BACKGROUND: Gene therapy strategies are promising therapeutic options for monogenic muscular dystrophies, with several currently underways. The adeno-associated viral (AAV) vector is among the most effective gene delivery systems. However, transduction efficiency in skeletal muscles varies between AAV serotypes, with the underlying factors poorly understood. We hypothesized that myofiber-specific tropism differs between AAV serotypes. METHODS: We developed a quantitative histology procedure and generated myofiber pattern maps for four myosin heavy chain (MyHC) isotypes. We compared myofiber pattern maps between AAV6 or AAV9 injected tibialis anterior muscle in mice. We correlated MyHC expression with AAV-derived green fluorescence protein (GFP) expression using statistical models. RESULTS: We found that MyHC-2x expressing myofibers display a significantly higher preference for AAV transduction, whereas MyHC-2b expressing myofibers negatively correlated with AAV transduction. In addition, we show that AAV9-mediated transduction is enriched in myofibers expressing MyHC-1 and MyHC-1/2a. Moreover, AAV9-mediated transduction can predominantly be predicted by the expression of MyHC isotypes. In contrast, AAV6 transduction can be predicted by myofiber size but not by myofiber types. CONCLUSIONS: Our findings identify differences between AAV6 and AAV9 for myofiber-type preferences, which could be an underlying factor for mosaic transduction of skeletal muscle. Adjusting AAV serotype for specific muscle conditions can therefore improve transduction efficacy in clinical applications.

20.
Hum Mol Genet ; 24(23): 6788-800, 2015 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-26385639

RESUMO

Peripheral nerve injury results in the activation of a number of transcription factors (TFs) in injured neurons, some of which may be key regulators of the regeneration-associated gene (RAG) programme. Among known RAG TFs, ATF3, Smad1, STAT3 and c-Jun have all been linked to successful axonal regeneration and have known functional and physical interactions. We hypothesised that TF expression would promote regeneration of the central axon branch of DRG neurons in the absence of a peripheral nerve lesion and that simultaneous overexpression of multiple RAG TFs would lead to greater effects than delivery of a single TF. Using adeno-associated viral vectors, we overexpressed either the combination of ATF3, Smad1, STAT3 and c-Jun with farnesylated GFP (fGFP), ATF3 only with fGFP, or fGFP only, in DRG neurons and assessed axonal regeneration after dorsal root transection or dorsal column injury and functional improvement after dorsal root injury. ATF3 alone and the combination of TFs promoted faster regeneration in the injured dorsal root. Surprisingly, however, the combination did not perform better than ATF3 alone. Neither treatment was able to induce functional improvement on sensory tests after dorsal root injury or promote regeneration in a dorsal column injury model. The lack of synergistic effects among these factors indicates that while they do increase the speed of axon growth, there may be functional redundancy between these TFs. Because axon growth is considerably less than that seen after a conditioning lesion, it appears these TFs do not induce the full regeneration programme.


Assuntos
Fator 3 Ativador da Transcrição/genética , Axônios/fisiologia , Regeneração Nervosa , Células Receptoras Sensoriais/fisiologia , Raízes Nervosas Espinhais/fisiologia , Animais , Axônios/metabolismo , Proteínas Proto-Oncogênicas c-jun/genética , Ratos , Fator de Transcrição STAT3/genética , Células Receptoras Sensoriais/metabolismo , Proteína Smad1/genética , Raízes Nervosas Espinhais/metabolismo , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA