Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Chem Asian J ; 18(14): e202300405, 2023 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-37249160

RESUMO

The continuous flow reverse water gas shift (rWGS) process was efficiently catalyzed by a plasmonic Au/TiO2 nanocatalyst using sunlight as sole and sustainable energy source. The influence of the catalyst bed thickness on the CO production rate was studied, and three different catalytic regimes were identified as direct plasmon catalysis (DPC), shielded plasmon catalysis (SPC) and unused plasmon catalysis (UPC). The CO2 : H2 ratio was optimized to 4 : 1 and a maximum CO production rate of 7420 mmol ⋅ m-2 ⋅ h-1 was achieved under mild reaction conditions (p=3.5 bar, no external heating, Ee =14.0 kW ⋅ m-2 ), corresponding to an aparent quantum efficiency of 4.15%. The stability of the Au/TiO2 catalyst was studied for 110 h continuous operation, maintaining more than 82% of the initial CO production rate. On/off experiments mimicking discontinuous sunlight powered processing furthermore showed that the Au/TiO2 catalyst was stable for 8 consecutive runs.

2.
Nano Lett ; 18(10): 6483-6488, 2018 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-30192147

RESUMO

Low dimensional semiconducting structures with strong spin-orbit interaction (SOI) and induced superconductivity attracted great interest in the search for topological superconductors. Both the strong SOI and hard superconducting gap are directly related to the topological protection of the predicted Majorana bound states. Here we explore the one-dimensional hole gas in germanium silicon (Ge-Si) core-shell nanowires (NWs) as a new material candidate for creating a topological superconductor. Fitting multiple Andreev reflection measurements shows that the NW has two transport channels only, underlining its one-dimensionality. Furthermore, we find anisotropy of the Landé g-factor that, combined with band structure calculations, provides us qualitative evidence for the direct Rashba SOI and a strong orbital effect of the magnetic field. Finally, a hard superconducting gap is found in the tunneling regime and the open regime, where we use the Kondo peak as a new tool to gauge the quality of the superconducting gap.

3.
Chem Commun (Camb) ; 53(27): 3898-3901, 2017 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-28322386

RESUMO

Protecting groups are commonly applied in multi-step molecular syntheses to protect one or multiple functional groups from reacting. After the reaction, they are removed from the molecule. In full analogy to this concept, we report the practical and scalable colloidal synthesis of Au semishells using polyphenylsiloxane protecting patches to prevent part of the surface of polystyrene nanoparticles from being covered with Au. After Au deposition, the patches are removed yielding Au semishells. We anticipate that this strategy can be extended to the synthesis of other types of non-centrosymmetric nanoparticles.

4.
Polymers (Basel) ; 9(10)2017 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-30965778

RESUMO

Janus particles are of great research interest because of their reduced symmetry, which provides them with unique physical and chemical properties. Such particles can be prepared from spherical structures through colloidal assembly. Whilst colloidal assembly has the potential to be a low cost and scalable process, it typically lacks selectivity. As a consequence, it results in a complex mixture of particles of different architectures, which is tedious to purify. Very recently, we reported the colloidal synthesis of Au semishells, making use of polystyrene⁻polyphenylsiloxane Janus particles as an intermediate product (Chem. Commun. 2017, 53, 3898⁻3901). Here, we demonstrate that these Janus particles are realized through colloidal assembly of spherical glucose-functionalized polystyrene particles and an emulsion of phenyltrimethoxysilane in aqueous ammonia, followed by interfacial polycondensation to form the polyphenylsiloxane patch. Both the polystyrene spheres and the emulsion of Ph-TMS in aqueous ammonia are stabilized by a surfmer-a reactive surfactant. The colloidal assembly reported in this manuscript proceeds with an unexpected high selectivity, which makes this process exceptionally interesting for the synthesis of Janus particles. Furthermore, we report insights into the details of the mechanism of formation of these Janus particles, and apply those to adapt the synthesis conditions to produce polystyrene particles selectively decorated with multiple polyphenylsiloxane patches, e.g., raspberry particles.

5.
Nanoscale ; 5(12): 5375-83, 2013 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-23652572

RESUMO

Nowadays bimetallic nanoparticles (NPs) have emerged as key materials for important modern applications in nanoplasmonics, catalysis, biodiagnostics, and nanomagnetics. Consequently the control of bimetallic structural motifs with specific shapes provides increasing functionality and selectivity for related applications. However, producing bimetallic NPs with well controlled structural motifs still remains a formidable challenge. Hence, we present here a general methodology for gas phase synthesis of bimetallic NPs with distinctively different structural motifs ranging at a single particle level from a fully mixed alloy to core-shell, to onion (multi-shell), and finally to a Janus/dumbbell, with the same overall particle composition. These concepts are illustrated for Mo-Cu NPs, where the precise control of the bimetallic NPs with various degrees of chemical ordering, including different shapes from spherical to cube, is achieved by tailoring the energy and thermal environment that the NPs experience during their production. The initial state of NP growth, either in the liquid or in the solid state phase, has important implications for the different structural motifs and shapes of synthesized NPs. Finally we demonstrate that we are able to tune the alloying regime, for the otherwise bulk immiscible Mo-Cu, by achieving an increase of the critical size, below which alloying occurs, closely up to an order of magnitude. It is discovered that the critical size of the NP alloy is not only affected by controlled tuning of the alloying temperature but also by the particle shape.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA