Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(20): e2217451120, 2023 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-37155854

RESUMO

Bone marrow stromal antigen 2 (BST2)/tetherin is a restriction factor that reduces HIV-1 dissemination by tethering virus at the cell surface. BST2 also acts as a sensor of HIV-1 budding, establishing a cellular antiviral state. The HIV-1 Vpu protein antagonizes BST2 antiviral functions via multiple mechanisms, including the subversion of an LC3C-associated pathway, a key cell intrinsic antimicrobial mechanism. Here, we describe the first step of this viral-induced LC3C-associated process. This process is initiated at the plasma membrane through the recognition and internalization of virus-tethered BST2 by ATG5, an autophagy protein. ATG5 and BST2 assemble as a complex, independently of the viral protein Vpu and ahead of the recruitment of the ATG protein LC3C. The conjugation of ATG5 with ATG12 is dispensable for this interaction. ATG5 recognizes cysteine-linked homodimerized BST2 and specifically engages phosphorylated BST2 tethering viruses at the plasma membrane, in an LC3C-associated pathway. We also found that this LC3C-associated pathway is used by Vpu to attenuate the inflammatory responses mediated by virion retention. Overall, we highlight that by targeting BST2 tethering viruses, ATG5 acts as a signaling scaffold to trigger an LC3C-associated pathway induced by HIV-1 infection.


Assuntos
Antígeno 2 do Estroma da Médula Óssea , Vírus , Antivirais/metabolismo , Membrana Celular/metabolismo , Proteínas Ligadas por GPI/genética , Proteínas Ligadas por GPI/metabolismo , Proteínas do Vírus da Imunodeficiência Humana/genética , Proteínas do Vírus da Imunodeficiência Humana/metabolismo , Proteínas Virais/metabolismo , Proteínas Virais Reguladoras e Acessórias/genética , Proteínas Virais Reguladoras e Acessórias/metabolismo , Vírus/metabolismo , Humanos
2.
J Cell Biol ; 222(2)2023 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-36574265

RESUMO

Limitation of excessive inflammation due to selective degradation of pro-inflammatory proteins is one of the cytoprotective functions attributed to autophagy. In the current study, we highlight that selective autophagy also plays a vital role in promoting the establishment of a robust inflammatory response. Under inflammatory conditions, here TLR3-activation by poly(I:C) treatment, the inflammation repressor TNIP1 (TNFAIP3 interacting protein 1) is phosphorylated by Tank-binding kinase 1 (TBK1) activating an LIR motif that leads to the selective autophagy-dependent degradation of TNIP1, supporting the expression of pro-inflammatory genes and proteins. This selective autophagy efficiently reduces TNIP1 protein levels early (0-4 h) upon poly(I:C) treatment to allow efficient initiation of the inflammatory response. At 6 h, TNIP1 levels are restored due to increased transcription avoiding sustained inflammation. Thus, similarly as in cancer, autophagy may play a dual role in controlling inflammation depending on the exact state and timing of the inflammatory response.


Assuntos
Autofagia , Proteínas de Ligação a DNA , Inflamação , Proteínas Serina-Treonina Quinases , Humanos , Proteínas de Ligação a DNA/metabolismo , Células HeLa , Fosforilação , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo
3.
Autophagy ; 16(10): 1858-1870, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-31905032

RESUMO

Crimean-Congo hemorrhagic fever virus (CCHFV) is a virus that causes severe liver dysfunctions and hemorrhagic fever, with high mortality rate. Here, we show that CCHFV infection caused a massive lipidation of LC3 in hepatocytes. This lipidation was not dependent on ATG5, ATG7 or BECN1, and no signs for recruitment of the alternative ATG12-ATG3 pathway for lipidation was found. Both virus replication and protein synthesis were required for the lipidation of LC3. Despite an augmented transcription of SQSTM1, the amount of proteins did not show a massive and sustained increase in infected cells, indicating that degradation of SQSTM1 by macroautophagy/autophagy was still occurring. The genetic alteration of autophagy did not influence the production of CCHFV particles demonstrating that autophagy was not required for CCHFV replication. Thus, the results indicate that CCHFV multiplication imposes an overtly elevated level of LC3 mobilization that involves a possibly novel type of non-canonical lipidation. Abbreviations: BECN1: Beclin 1; CCHF: Crimean-Congo hemorrhagic fever; CCHFV: Crimean-Congo hemorrhagic fever virus; CHX: cycloheximide; ER: endoplasmic reticulum; GFP: green fluorescent protein; GP: glycoproteins; MAP1LC3: microtubule associated protein 1 light chain 3; MOI: multiplicity of infection; n.i.: non-infected; NP: nucleoprotein; p.i.: post-infection; SQSTM1: sequestosome 1.


Assuntos
Autofagia , Células Epiteliais/virologia , Vírus da Febre Hemorrágica da Crimeia-Congo/metabolismo , Febre Hemorrágica da Crimeia/virologia , Replicação Viral , Animais , Proteína 5 Relacionada à Autofagia/metabolismo , Proteína 7 Relacionada à Autofagia/metabolismo , Proteína Beclina-1/metabolismo , Chlorocebus aethiops , Células HeLa , Vírus da Febre Hemorrágica da Crimeia-Congo/genética , Febre Hemorrágica da Crimeia/diagnóstico , Febre Hemorrágica da Crimeia/metabolismo , Células Hep G2 , Hepatócitos/virologia , Humanos , Lipídeos/química , Proteínas Associadas aos Microtúbulos/metabolismo , Biossíntese de Proteínas , Proteína Sequestossoma-1/metabolismo , Células Vero
4.
Sci Rep ; 9(1): 16014, 2019 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-31690813

RESUMO

The NF-κB pathway is constitutively activated in adult T cell leukemia, an aggressive malignancy caused by Human T Leukemia Virus type 1 (HTLV-1). The viral oncoprotein Tax triggers this constitutive activation by interacting with the ubiquitin-rich IKK complex. We previously demonstrated that Optineurin and TAX1BP1, two members of the ubiquitin-binding, Sequestosome-1 (SQSTM-1/p62)-like selective autophagy receptor family, are involved in Tax-mediated NF-κB signaling. Here, using a proximity-dependent biotinylation approach (BioID), we identify p62 as a new candidate partner of Tax and confirm the interaction in infected T cells. We then demonstrate that p62 knock-out in MEF cells as well as p62 knock-down in HEK293T cells significantly reduces Tax-mediated NF-κB activity. We further show that although p62 knock-down does not alter NF-κB activation in Jurkat T cells nor in infected T cells, p62 does potentiate Tax-mediated NF-κB activity upon over-expression in Jurkat T cells. We next show that p62 associates with the Tax/IKK signalosome in cells, and identify the 170-206 domain of p62 as sufficient for the direct, ubiquitin-independent interaction with Tax. However, we observe that this domain is dispensable for modulating Tax activity in cells, and functional analysis of p62 mutants indicates that p62 could potentiate Tax activity in cells by facilitating the association of ubiquitin chains with the Tax/IKK signalosome. Altogether, our results identify p62 as a new ubiquitin-dependent modulator of Tax activity on NF-κB, further highlighting the importance of ubiquitin in the signaling activity of the viral Tax oncoprotein.


Assuntos
Produtos do Gene tax/metabolismo , Vírus Linfotrópico T Tipo 1 Humano/metabolismo , NF-kappa B/metabolismo , Proteína Sequestossoma-1/metabolismo , Ubiquitina/metabolismo , Animais , Linhagem Celular , Produtos do Gene tax/genética , Células HEK293 , Humanos , Células Jurkat , Camundongos , Ligação Proteica , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Proteínas Recombinantes de Fusão/biossíntese , Proteínas Recombinantes de Fusão/isolamento & purificação , Proteína Sequestossoma-1/antagonistas & inibidores , Proteína Sequestossoma-1/genética , Transdução de Sinais , Ubiquitina/química
5.
Viruses ; 9(7)2017 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-28677644

RESUMO

Viruses have evolved unique strategies to evade or subvert autophagy machinery. Enterovirus A71 (EV-A71) induces autophagy during infection in vitro and in vivo. In this study, we report that EV-A71 triggers autolysosome formation during infection in human rhabdomyosarcoma (RD) cells to facilitate its replication. Blocking autophagosome-lysosome fusion with chloroquine inhibited virus RNA replication, resulting in lower viral titres, viral RNA copies and viral proteins. Overexpression of the non-structural protein 2BC of EV-A71 induced autolysosome formation. Yeast 2-hybrid and co-affinity purification assays showed that 2BC physically and specifically interacted with a N-ethylmaleimide-sensitive factor attachment receptor (SNARE) protein, syntaxin-17 (STX17). Co-immunoprecipitation assay further showed that 2BC binds to SNARE proteins, STX17 and synaptosome associated protein 29 (SNAP29). Transient knockdown of STX17, SNAP29, and microtubule-associated protein 1 light chain 3B (LC3B), crucial proteins in the fusion between autophagosomes and lysosomes) as well as the lysosomal-associated membrane protein 1 (LAMP1) impaired production of infectious EV-A71 in RD cells. Collectively, these results demonstrate that the generation of autolysosomes triggered by the 2BC non-structural protein is important for EV-A71 replication, revealing a potential molecular pathway targeted by the virus to exploit autophagy. This study opens the possibility for the development of novel antivirals that specifically target 2BC to inhibit formation of autolysosomes during EV-A71 infection.


Assuntos
Enterovirus Humano A/fisiologia , Proteínas de Membrana Lisossomal/metabolismo , Lisossomos/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas Qa-SNARE/metabolismo , Proteínas Qb-SNARE/metabolismo , Proteínas Qc-SNARE/metabolismo , Proteínas não Estruturais Virais/metabolismo , Linhagem Celular Tumoral , Interações Hospedeiro-Patógeno , Humanos , Imunoprecipitação , Ligação Proteica , Mapeamento de Interação de Proteínas , Técnicas do Sistema de Duplo-Híbrido , Replicação Viral
6.
Viruses ; 9(5)2017 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-28531150

RESUMO

Autophagy is a potent cell autonomous defense mechanism that engages the lysosomal pathway to fight intracellular pathogens. Several autophagy receptors can recognize invading pathogens in order to target them towards autophagy for their degradation after the fusion of pathogen-containing autophagosomes with lysosomes. However, numerous intracellular pathogens can avoid or exploit autophagy, among which is measles virus (MeV). This virus induces a complete autophagy flux, which is required to improve viral replication. We therefore asked how measles virus interferes with autophagy receptors during the course of infection. We report that in addition to NDP52/CALCOCO2 and OPTINEURIN/OPTN, another autophagy receptor, namely T6BP/TAXIBP1, also regulates the maturation of autophagosomes by promoting their fusion with lysosomes, independently of any infection. Surprisingly, only two of these receptors, NDP52 and T6BP, impacted measles virus replication, although independently, and possibly through physical interaction with MeV proteins. Thus, our results suggest that a restricted set of autophagosomes is selectively exploited by measles virus to replicate in the course of infection.


Assuntos
Autofagia/fisiologia , Proteínas de Transporte/fisiologia , Vírus do Sarampo/fisiologia , Sarampo/virologia , Replicação Viral/fisiologia , Proteínas de Ciclo Celular , Células HeLa , Interações Hospedeiro-Patógeno , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Lisossomos/metabolismo , Vírus do Sarampo/patogenicidade , Proteínas de Membrana Transportadoras , Proteínas de Neoplasias/metabolismo , Proteínas Nucleares/metabolismo , Fagossomos/metabolismo , Fator de Transcrição TFIIIA/metabolismo , Proteínas Virais/metabolismo
7.
Cell Host Microbe ; 17(4): 515-25, 2015 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-25771791

RESUMO

Xenophagy, an essential anti-microbial cell-autonomous mechanism, relies on the ability of the autophagic process to selectively entrap intracellular pathogens within autophagosomes to degrade them in autolysosomes. This selective targeting is carried out by specialized autophagy receptors, such as NDP52, but it is unknown whether the fusion of pathogen-containing autophagosomes with lysosomes is also regulated by pathogen-specific cellular factors. Here, we show that NDP52 also promotes the maturation of autophagosomes via its interaction with LC3A, LC3B, and/or GABARAPL2 through a distinct LC3-interacting region, and with MYOSIN VI. During Salmonella Typhimurium infection, the regulatory function of NDP52 in autophagosome maturation is complementary but independent of its function in pathogen targeting to autophagosomes, which relies on the interaction with LC3C. Thus, complete xenophagy is selectively regulated by a single autophagy receptor, which initially orchestrates bacteria targeting to autophagosomes and subsequently ensures pathogen degradation by regulating pathogen-containing autophagosome maturation.


Assuntos
Autofagia , Células Epiteliais/imunologia , Células Epiteliais/microbiologia , Proteínas Nucleares/metabolismo , Fagossomos/metabolismo , Salmonella typhimurium/imunologia , Células HeLa , Humanos , Lisossomos/metabolismo
8.
Virologie (Montrouge) ; 15(4): 222-234, 2011 Aug 01.
Artigo em Francês | MEDLINE | ID: mdl-36151672

RESUMO

Viruses represent an important cause of cancer in humans: infections are estimated to account for close to one cancer case out of five.With the ongoing discovery of new infectious agents, this number should be raising in the near future. In 2006, the discovery of a new _-retrovirus in prostate cancer biopsies launched an intense research activity: could this new xenotropic MLV-related virus (XMRV) be the cause of prostate cancer? Five years later, the initial enthusiasm of retrovirologists has dramatically diminished. One by one, arguments favouring the hypothesis of human infection with XMRV are being refuted. The aim of this review article is to present the discovery of XMRV and to analyze recent data arguing against its existence in humans. A synthetic interpretation of XMRV literature will then be suggested.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA