Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(22)2023 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-38003300

RESUMO

Herpesviruses are large DNA viruses that have long been used as powerful gene therapy tools. In recent years, the ability of herpesviruses to stimulate both innate and adaptive immune responses has led to their transition to various applications as vaccine vectors. This vaccinology branch is growing at an unprecedented and accelerated rate. To date, human herpesvirus-based vectors have been used in vaccines to combat a variety of infectious agents, including the Ebola virus, foot and mouth disease virus, and human immunodeficiency viruses. Additionally, these vectors are being tested as potential vaccines for cancer-associated antigens. Thanks to advances in recombinant DNA technology, immunology, and genomics, numerous steps in vaccine development have been greatly improved. A better understanding of herpesvirus biology and the interactions between these viruses and the host cells will undoubtedly foster the use of herpesvirus-based vaccine vectors in clinical settings. To overcome the existing drawbacks of these vectors, ongoing research is needed to further advance our knowledge of herpesvirus biology and to develop safer and more effective vaccine vectors. Advanced molecular virology and cell biology techniques must be used to better understand the mechanisms by which herpesviruses manipulate host cells and how viral gene expression is regulated during infection. In this review, we cover the underlying molecular structure of herpesviruses and the strategies used to engineer their genomes to optimize capacity and efficacy as vaccine vectors. Also, we assess the available data on the successful application of herpesvirus-based vaccines for combating diseases such as viral infections and the potential drawbacks and alternative approaches to surmount them.


Assuntos
Herpesviridae , Vacinas Virais , Viroses , Humanos , Herpesviridae/genética , Simplexvirus/genética , Vetores Genéticos/genética
2.
Front Vet Sci ; 10: 1165994, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37441557

RESUMO

Introduction: Effective identification and treatment of bovine respiratory disease (BRD) is an ongoing health and economic issue for the dairy and beef cattle industries. Bacteria pathogens Pasteurellamultocida, Mycoplasmabovis, Mannheimia haemolytica, and Histophilus somni and the virus Bovine herpesvirus-1 (BHV-1), Bovine parainfluenza-3 virus (BPIV-3), Bovine respiratory syncytial virus (BRSV), Bovine adenovirus 3 (BAdV3), bovine coronavirus (BoCV) and Bovine viral diarrhea virus (BVDV) have commonly been identified in BRD cattle; however, no studies have investigated the fungal community and how it may also relate to BRD. Methods: The objective of this study was to understand if the nasal mycobiome differs between a BRD-affected (n = 56) and visually healthy (n = 73) Holstein steers. Fungal nasal community was determined by using Internal Transcribed Spacer (ITS) sequencing. Results: The phyla, Ascomycota and Basidiomycota, and the genera, Trichosporon and Issatchenkia, were the most abundant among all animals, regardless of health status. We identified differences between healthy and BRD animals in abundance of Trichosporon and Issatchenkia orientalis at a sub-species level that could be a potential indicator of BRD. No differences were observed in the nasal fungal alpha and beta diversity between BRD and healthy animals. However, the fungal community structure was affected based on season, specifically when comparing samples collected in the summer to the winter season. We then performed a random forest model, based on the fungal community and abundance of the BRD-pathobionts (qPCR data generated from a previous study using the same animals), to classify healthy and BRD animals and determine the agreement with visual diagnosis. Classification of BRD or healthy animals using ITS sequencing was low and agreed with the visual diagnosis with an accuracy of 51.9%. A portion of the ITS-predicted BRD animals were not predicted based on the abundance of BRD pathobionts. Lastly, fungal and bacterial co-occurrence were more common in BRD animals than healthy animals. Discussion: The results from this novel study provide a baseline understanding of the fungal diversity and composition in the nasal cavity of BRD and healthy animals, upon which future interaction studies, including other nasal microbiome members to further understand and accurately diagnose BRD, can be designed.

3.
Acta Biomater ; 154: 83-96, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36162763

RESUMO

The gastrointestinal (GI) tract, particularly the colon region, holds a highly diverse microbial community that plays an important role in the metabolism, physiology, nutrition, and immune function of the host body. Accumulating evidence has revealed that alteration in these microbial communities is the pivotal step in developing various metabolic diseases, including obesity, inflammatory bowel disease (IBD), and colorectal cancer. However, there is still a lack of clear understanding of the interrelationship between microbiota and diet as well as the effectiveness of chemoprevention strategies, including pre and probiotic agents in modifying the colonic microbiota and preventing digestive diseases. Existing methods for assessing these microbiota-diet interactions are often based on samples collected from the feces or endoscopy techniques which are incapable of providing information on spatial variations of the gut microbiota or are considered invasive procedures. To address this need, here we have developed an electronic-free smart capsule that enables site-specific sampling of the gut microbiome within the proximal colon region of the GI tract. The 3D printed device houses a superabsorbent hydrogel bonded onto a flexible polydimethylsiloxane (PDMS) disk that serves as a milieu to collect the fluid in the gut lumen and its microbiome by rapid swelling and providing the necessary mechanical actuation to close the capsule after the sampling is completed. The targeted colonic sampling is achieved by coating the sampling aperture on the capsule with a double-layer pH-sensitive enteric coating, which delays fluid in the lumen from entering the capsule until it reaches the proximal colon of the GI tract. To identify the appropriate pH-responsive double-layer coating and processing condition, a series of systematic dissolution characterizations in different pH conditions that mimicked the GI tract was conducted. The effective targeted microbial sampling performance and preservation of the smart capsule with the optimized design were validated using both realistic in vitro GI tract models with mixed bacteria cultures and in vivo with pigs as an animal model. The results from 16s rRNA and WideSeq analysis in both in vitro and in vivo studies showed that the bacterial population sampled within the retrieved capsule closely matched the bacterial population within the targeted sampling region (proximal colon). Herein, it is envisioned that such smart sampling capsule technology will provide new avenues for gastroenterological research and clinical applications, including diet-host-microbiome relationships, focused on human GI function and health. STATEMENT OF SIGNIFICANCE: The colonic microbiota plays a major role in the etiology of numerous diseases. Extensive efforts have been conducted to monitor the gut microbiome using sequencing technologies based on samples collected from feces or mucosal biopsies that are typically obtained by colonoscopy. Despite the simplicity of fecal sampling procedures, they are incapable of preserving spatial and temporal information about the bacteria through the gastrointestinal (GI) tract. In contrast, colonoscopy is an invasive and impractical approach to frequently assess the effect of dietary and therapeutic intake on the microbiome and their impact on the health of the patient. Here, we developed a non-invasive capsule that enables targeted sampling from the ascending colon, thereby providing crucial information for disease prediction and monitoring.


Assuntos
Microbioma Gastrointestinal , Microbiota , Humanos , Suínos , Animais , RNA Ribossômico 16S/genética , Microbioma Gastrointestinal/fisiologia , Colo , Fezes/microbiologia , Bactérias
4.
RSC Adv ; 10(28): 16313-16322, 2020 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-35498852

RESUMO

Gut microbiota plays an important role in host physiology such as obesity, diabetes, and various neurological diseases. Thus, microbiome sampling is a fundamental approach towards better understanding of possible diseases. However, conventional sampling methods, such as endoscopies or colonoscopies, are invasive and cannot reach the entire small intestine. To address this need, a battery-less 3D-printed sampling capsule, which can collect microbiome samples throughout the entirety of the GI tract was designed. The capsule (9 mm × 15 mm) consists of a 3D printed acrylic housing, a fast-absorbing hydrogel, and a flexible PDMS membrane. Fluids containing samples of the microbial flora within the GI tract enter the device through a sampling aperture on the cap of the device. Once the microbiome enters the housing, the hydrogel absorbs the fluid and swells, effectively protecting the samples within its polymeric matrix, while also pushing on the flexible PDMS membrane to block the sampling aperture from further fluid exchange. The retrieved capsule can be readily disassembled due to the screw-cap design of the capsule and the hydrogel can be removed for further bacterial culture and analysis. As a proof of concept, the capsule's bacterial sampling efficiency and the ability to host microbial samples within the hydrogel in a sealed capsule were validated using a liquid culture containing Escherichia coli. The demonstrated technology provides a promising inexpensive tool for direct sampling and assessment of microbes throughout the GI tract and can enable new insights into the role of diet in mediating host-microbe interactions and metabolism.

5.
ACS Chem Biol ; 13(5): 1291-1298, 2018 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-29584955

RESUMO

Two biological activities of butyrate in the colon (suppression of proliferation of colonic epithelial stem cells and inflammation) correlate with inhibition of the activity of histone deacetylases. Cellular and biochemical studies of molecules similar in structure to butyrate, but different in molecular details (functional groups, chain-length, deuteration, oxidation level, fluorination, or degree of unsaturation), demonstrated that these activities were sensitive to molecular structure, and were compatible with the hypothesis that butyrate acts by binding to the Zn2+ in the catalytic site of histone deacetylases. Structure-activity relationships drawn from a set of 36 compounds offer a starting point for the design of new compounds targeting the inhibition of histone deacetylases. The observation that butyrate was more potent than other short-chain fatty acids is compatible with the hypothesis that crypts evolved (at least in part), to separate stem cells at the base of crypts from butyrate produced by commensal bacteria.


Assuntos
Butiratos/metabolismo , Colo/metabolismo , Proliferação de Células/efeitos dos fármacos , Ensaio de Imunoadsorção Enzimática , Inibidores de Histona Desacetilases/farmacologia , Histona Desacetilases/metabolismo , Humanos , Inflamação/prevenção & controle , Interleucina-6/metabolismo , Mucosa Intestinal/metabolismo , Macrófagos/metabolismo , Oxirredução
6.
Biomaterials ; 35(14): 4249-54, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24576805

RESUMO

A broad range of human diseases are associated with bacterial infections, often initiated by specific adhesion of a bacterium to the target environment. Despite the significant role of bacterial adhesion in human infectious diseases, details and mechanisms of bacterial adhesion have remained elusive. Herein, we study the physical interactions between Staphylococcus aureus, a type of micro-organism relevant to infections associated with medical implants, and nanocrystalline (nc) nickel nanostructures with various columnar features, including solid core, hollow, x-shaped and c-shaped pillars. Scanning electron microscopy results show the tendency of these bacterial cells to attach to the nickel nanostructures. Moreover, unique single bacterium attachment characteristics were observed on nickel nanostructures with dimensions comparable to the size of a single bacterium.


Assuntos
Nanopartículas/química , Níquel/farmacologia , Staphylococcus aureus/citologia , Staphylococcus aureus/efeitos dos fármacos , Aderência Bacteriana/efeitos dos fármacos , Humanos , Nanopartículas/ultraestrutura , Staphylococcus aureus/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA