Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Cell Rep Med ; 5(2): 101430, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38382466

RESUMO

Primary open-angle glaucoma (POAG), a leading cause of irreversible blindness globally, shows disparity in prevalence and manifestations across ancestries. We perform meta-analysis across 15 biobanks (of the Global Biobank Meta-analysis Initiative) (n = 1,487,441: cases = 26,848) and merge with previous multi-ancestry studies, with the combined dataset representing the largest and most diverse POAG study to date (n = 1,478,037: cases = 46,325) and identify 17 novel significant loci, 5 of which were ancestry specific. Gene-enrichment and transcriptome-wide association analyses implicate vascular and cancer genes, a fifth of which are primary ciliary related. We perform an extensive statistical analysis of SIX6 and CDKN2B-AS1 loci in human GTEx data and across large electronic health records showing interaction between SIX6 gene and causal variants in the chr9p21.3 locus, with expression effect on CDKN2A/B. Our results suggest that some POAG risk variants may be ancestry specific, sex specific, or both, and support the contribution of genes involved in programmed cell death in POAG pathogenesis.


Assuntos
Predisposição Genética para Doença , Glaucoma de Ângulo Aberto , Masculino , Feminino , Humanos , Predisposição Genética para Doença/genética , Glaucoma de Ângulo Aberto/genética , Glaucoma de Ângulo Aberto/epidemiologia , Polimorfismo de Nucleotídeo Único , Proliferação de Células , Biologia
2.
Addict Biol ; 27(1): e13099, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34611967

RESUMO

Polygenic risk scores (PRS) represent an individual's summed genetic risk for a trait and can serve as biomarkers for disease. Less is known about the utility of PRS as a means to quantify genetic risk for substance use disorders (SUDs) than for many other traits. Nonetheless, the growth of large, electronic health record-based biobanks makes it possible to evaluate the association of SUD PRS with other traits. We calculated PRS for smoking initiation, alcohol use disorder (AUD), and opioid use disorder (OUD) using summary statistics from the Million Veteran Program sample. We then tested the association of each PRS with its primary phenotype in the Penn Medicine BioBank (PMBB) using all available genotyped participants of African or European ancestry (AFR and EUR, respectively) (N = 18,612). Finally, we conducted phenome-wide association analyses (PheWAS) separately by ancestry and sex to test for associations across disease categories. Tobacco use disorder was the most common SUD in the PMBB, followed by AUD and OUD, consistent with the population prevalence of these disorders. All PRS were associated with their primary phenotype in both ancestry groups. PheWAS results yielded cross-trait associations across multiple domains, including psychiatric disorders and medical conditions. SUD PRS were associated with their primary phenotypes; however, they are not yet predictive enough to be useful diagnostically. The cross-trait associations of the SUD PRS are indicative of a broader genetic liability. Future work should extend findings to additional population groups and for other substances of abuse.


Assuntos
Comorbidade , Registros Eletrônicos de Saúde/estatística & dados numéricos , Predisposição Genética para Doença/genética , Transtornos Relacionados ao Uso de Substâncias/etnologia , Transtornos Relacionados ao Uso de Substâncias/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Alcoolismo/etnologia , Alcoolismo/genética , População Negra/genética , Feminino , Estudo de Associação Genômica Ampla , Genótipo , Humanos , Masculino , Pessoa de Meia-Idade , Herança Multifatorial , Transtornos Relacionados ao Uso de Opioides/etnologia , Transtornos Relacionados ao Uso de Opioides/genética , Fenótipo , Fatores de Risco , Fatores Sexuais , Tabagismo/etnologia , Tabagismo/genética , População Branca/genética
3.
Genet Med ; 24(3): 601-609, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34906489

RESUMO

PURPOSE: Genome-wide association studies have identified hundreds of single nucleotide variations (formerly single nucleotide polymorphisms) associated with several cancers, but the predictive ability of polygenic risk scores (PRSs) is unclear, especially among non-Whites. METHODS: PRSs were derived from genome-wide significant single-nucleotide variations for 15 cancers in 20,079 individuals in an academic biobank. We evaluated the improvement in discriminatory accuracy by including cancer-specific PRS in patients of genetically-determined African and European ancestry. RESULTS: Among the individuals of European genetic ancestry, PRSs for breast, colon, melanoma, and prostate were significantly associated with their respective cancers. Among the individuals of African genetic ancestry, PRSs for breast, colon, prostate, and thyroid were significantly associated with their respective cancers. The area under the curve of the model consisting of age, sex, and principal components was 0.621 to 0.710, and it increased by 1% to 4% with the inclusion of PRS in individuals of European genetic ancestry. In individuals of African genetic ancestry, area under the curve was overall higher in the model without the PRS (0.723-0.810) but increased by <1% with the inclusion of PRS for most cancers. CONCLUSION: PRS moderately increased the ability to discriminate the cancer status in individuals of European but not African ancestry. Further large-scale studies are needed to identify ancestry-specific genetic factors in non-White populations to incorporate PRS into cancer risk assessment.


Assuntos
Estudo de Associação Genômica Ampla , Herança Multifatorial , Neoplasias , Bancos de Espécimes Biológicos , População Negra/genética , Feminino , Predisposição Genética para Doença , Humanos , Masculino , Neoplasias/etnologia , Neoplasias/genética , Fatores de Risco , População Branca/genética
5.
Biol Psychiatry ; 89(3): 236-245, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-32919613

RESUMO

BACKGROUND: Prediction of disease risk is a key component of precision medicine. Common traits such as psychiatric disorders have a complex polygenic architecture, making the identification of a single risk predictor difficult. Polygenic risk scores (PRSs) denoting the sum of an individual's genetic liability for a disorder are a promising biomarker for psychiatric disorders, but they require evaluation in a clinical setting. METHODS: We developed PRSs for 6 psychiatric disorders (schizophrenia, bipolar disorder, major depressive disorder, cross disorder, attention-deficit/hyperactivity disorder, and anorexia nervosa) and 17 nonpsychiatric traits in more than 10,000 individuals from the Penn Medicine Biobank with accompanying electronic health records. We performed phenome-wide association analyses to test their association across disease categories. RESULTS: Four of the 6 psychiatric PRSs were associated with their primary phenotypes (odds ratios from 1.2 to 1.6). Cross-trait associations were identified both within the psychiatric domain and across trait domains. PRSs for coronary artery disease and years of education were significantly associated with psychiatric disorders, largely driven by an association with tobacco use disorder. CONCLUSIONS: We demonstrated that the genetic architecture of electronic health record-derived psychiatric diagnoses is similar to ascertained research cohorts from large consortia. Psychiatric PRSs are moderately associated with psychiatric diagnoses but are not yet clinically predictive in naïve patients. Cross-trait associations for these PRSs suggest a broader effect of genetic liability beyond traditional diagnostic boundaries. As identification of genetic markers increases, including PRSs alongside other clinical risk factors may enhance prediction of psychiatric disorders and associated conditions in clinical registries.


Assuntos
Transtorno Bipolar , Transtorno Depressivo Maior , Transtorno Bipolar/epidemiologia , Transtorno Bipolar/genética , Transtorno Depressivo Maior/epidemiologia , Transtorno Depressivo Maior/genética , Registros Eletrônicos de Saúde , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Humanos , Herança Multifatorial/genética , Fenótipo
6.
JAMA ; 322(22): 2191-2202, 2019 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-31821430

RESUMO

Importance: Hereditary transthyretin (TTR) amyloid cardiomyopathy (hATTR-CM) due to the TTR V122I variant is an autosomal-dominant disorder that causes heart failure in elderly individuals of African ancestry. The clinical associations of carrying the variant, its effect in other African ancestry populations including Hispanic/Latino individuals, and the rates of achieving a clinical diagnosis in carriers are unknown. Objective: To assess the association between the TTR V122I variant and heart failure and identify rates of hATTR-CM diagnosis among carriers with heart failure. Design, Setting, and Participants: Cross-sectional analysis of carriers and noncarriers of TTR V122I of African ancestry aged 50 years or older enrolled in the Penn Medicine Biobank between 2008 and 2017 using electronic health record data from 1996 to 2017. Case-control study in participants of African and Hispanic/Latino ancestry with and without heart failure in the Mount Sinai BioMe Biobank enrolled between 2007 and 2015 using electronic health record data from 2007 to 2018. Exposures: TTR V122I carrier status. Main Outcomes and Measures: The primary outcome was prevalent heart failure. The rate of diagnosis with hATTR-CM among TTR V122I carriers with heart failure was measured. Results: The cross-sectional cohort included 3724 individuals of African ancestry with a median age of 64 years (interquartile range, 57-71); 1755 (47%) were male, 2896 (78%) had a diagnosis of hypertension, and 753 (20%) had a history of myocardial infarction or coronary revascularization. There were 116 TTR V122I carriers (3.1%); 1121 participants (30%) had heart failure. The case-control study consisted of 2307 individuals of African ancestry and 3663 Hispanic/Latino individuals; the median age was 73 years (interquartile range, 68-80), 2271 (38%) were male, 4709 (79%) had a diagnosis of hypertension, and 1008 (17%) had a history of myocardial infarction or coronary revascularization. There were 1376 cases of heart failure. TTR V122I was associated with higher rates of heart failure (cross-sectional cohort: n = 51/116 TTR V122I carriers [44%], n = 1070/3608 noncarriers [30%], adjusted odds ratio, 1.7 [95% CI, 1.2-2.4], P = .006; case-control study: n = 36/1376 heart failure cases [2.6%], n = 82/4594 controls [1.8%], adjusted odds ratio, 1.8 [95% CI, 1.2-2.7], P = .008). Ten of 92 TTR V122I carriers with heart failure (11%) were diagnosed as having hATTR-CM; the median time from onset of symptoms to clinical diagnosis was 3 years. Conclusions and Relevance: Among individuals of African or Hispanic/Latino ancestry enrolled in 2 academic medical center-based biobanks, the TTR V122I genetic variant was significantly associated with heart failure.


Assuntos
Neuropatias Amiloides Familiares/genética , Negro ou Afro-Americano/genética , Insuficiência Cardíaca/genética , Hispânico ou Latino/genética , Pré-Albumina/genética , Centros Médicos Acadêmicos , Idoso , Neuropatias Amiloides Familiares/complicações , Neuropatias Amiloides Familiares/etnologia , Bancos de Espécimes Biológicos , Estudos de Casos e Controles , Estudos Transversais , Feminino , Variação Genética , Insuficiência Cardíaca/etnologia , Humanos , Masculino , Pessoa de Meia-Idade
7.
Circulation ; 138(22): 2469-2481, 2018 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-30571344

RESUMO

BACKGROUND: Proteomic approaches allow measurement of thousands of proteins in a single specimen, which can accelerate biomarker discovery. However, applying these technologies to massive biobanks is not currently feasible because of the practical barriers and costs of implementing such assays at scale. To overcome these challenges, we used a "virtual proteomic" approach, linking genetically predicted protein levels to clinical diagnoses in >40 000 individuals. METHODS: We used genome-wide association data from the Framingham Heart Study (n=759) to construct genetic predictors for 1129 plasma protein levels. We validated the genetic predictors for 268 proteins and used them to compute predicted protein levels in 41 288 genotyped individuals in the Electronic Medical Records and Genomics (eMERGE) cohort. We tested associations for each predicted protein with 1128 clinical phenotypes. Lead associations were validated with directly measured protein levels and either low-density lipoprotein cholesterol or subclinical atherosclerosis in the MDCS (Malmö Diet and Cancer Study; n=651). RESULTS: In the virtual proteomic analysis in eMERGE, 55 proteins were associated with 89 distinct diagnoses at a false discovery rate q<0.1. Among these, 13 associations involved lipid (n=7) or atherosclerosis (n=6) phenotypes. We tested each association for validation in MDCS using directly measured protein levels. At Bonferroni-adjusted significance thresholds, levels of apolipoprotein E isoforms were associated with hyperlipidemia, and circulating C-type lectin domain family 1 member B and platelet-derived growth factor receptor-ß predicted subclinical atherosclerosis. Odds ratios for carotid atherosclerosis were 1.31 (95% CI, 1.08-1.58; P=0.006) per 1-SD increment in C-type lectin domain family 1 member B and 0.79 (0.66-0.94; P=0.008) per 1-SD increment in platelet-derived growth factor receptor-ß. CONCLUSIONS: We demonstrate a biomarker discovery paradigm to identify candidate biomarkers of cardiovascular and other diseases.


Assuntos
Biomarcadores/sangue , Doenças das Artérias Carótidas/diagnóstico , Estudo de Associação Genômica Ampla , Proteoma/análise , Adulto , Idoso , Idoso de 80 Anos ou mais , Doenças das Artérias Carótidas/genética , Feminino , Genótipo , Humanos , Lectinas Tipo C/análise , Masculino , Pessoa de Meia-Idade , Razão de Chances , Fenótipo , Polimorfismo de Nucleotídeo Único , Proteômica , Receptor beta de Fator de Crescimento Derivado de Plaquetas/sangue
8.
Pharmacogenet Genomics ; 28(7): 179-187, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29847509

RESUMO

OBJECTIVE: We characterized associations between central nervous system (CNS) adverse events and brain neurotransmitter transporter/receptor genomics among participants randomized to efavirenz-containing regimens in AIDS Clinical Trials Group studies in the USA. PARTICIPANTS AND METHODS: Four clinical trials randomly assigned treatment-naive participants to efavirenz-containing regimens. Genome-wide genotype and PrediXcan were used to infer gene expression levels in tissues including 10 brain regions. Multivariable regression models stratified by race/ethnicity were adjusted for CYP2B6/CYP2A6 genotypes that predict plasma efavirenz exposure, age, and sex. Combined analyses also adjusted for genetic ancestry. RESULTS: Analyses included 167 cases with grade 2 or greater efavirenz-consistent CNS adverse events within 48 weeks of study entry, and 653 efavirenz-tolerant controls. CYP2B6/CYP2A6 genotype level was independently associated with CNS adverse events (odds ratio: 1.07; P=0.044). Predicted expression of six genes postulated to mediate efavirenz CNS side effects (SLC6A2, SLC6A3, PGR, HTR2A, HTR2B, HTR6) were not associated with CNS adverse events after correcting for multiple testing, the lowest P value being for PGR in hippocampus (P=0.012), nor were polymorphisms in these genes or AR and HTR2C, the lowest P value being for rs12393326 in HTR2C (P=6.7×10(-4)). As a positive control, baseline plasma bilirubin concentration was associated with predicted liver UGT1A1 expression level (P=1.9×10(-27)). CONCLUSION: Efavirenz-related CNS adverse events were not associated with predicted neurotransmitter transporter/receptor gene expression levels in brain or with polymorphisms in these genes. Variable susceptibility to efavirenz-related CNS adverse events may not be explained by brain neurotransmitter transporter/receptor genomics.


Assuntos
Benzoxazinas/efeitos adversos , Doenças do Sistema Nervoso Central/induzido quimicamente , Doenças do Sistema Nervoso Central/genética , Infecções por HIV/tratamento farmacológico , Proteínas de Transporte de Neurotransmissores/genética , Polimorfismo de Nucleotídeo Único , Receptores de Neurotransmissores/genética , Adulto , Alcinos , Ciclopropanos , Feminino , Genômica , Genótipo , HIV/efeitos dos fármacos , Humanos , Masculino , Pessoa de Meia-Idade , Testes Farmacogenômicos , Inibidores da Transcriptase Reversa/efeitos adversos
9.
J Am Med Inform Assoc ; 24(3): 577-587, 2017 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-28040685

RESUMO

It is common that cancer patients have different molecular signatures even though they have similar clinical features, such as histology, due to the heterogeneity of tumors. To overcome this variability, we previously developed a new approach incorporating prior biological knowledge that identifies knowledge-driven genomic interactions associated with outcomes of interest. However, no systematic approach has been proposed to identify interaction models between pathways based on multi-omics data. Here we have proposed such a novel methodological framework, called metadimensional knowledge-driven genomic interactions (MKGIs). To test the utility of the proposed framework, we applied it to an ovarian cancer dataset including multi-omics profiles from The Cancer Genome Atlas to predict grade, stage, and survival outcome. We found that each knowledge-driven genomic interaction model, based on different genomic datasets, contains different sets of pathway features, which suggests that each genomic data type may contribute to outcomes in ovarian cancer via a different pathway. In addition, MKGI models significantly outperformed the single knowledge-driven genomic interaction model. From the MKGI models, many interactions between pathways associated with outcomes were found, including the mitogen-activated protein kinase (MAPK) signaling pathway and the gonadotropin-releasing hormone (GnRH) signaling pathway, which are known to play important roles in cancer pathogenesis. The beauty of incorporating biological knowledge into the model based on multi-omics data is the ability to improve diagnosis and prognosis and provide better interpretability. Thus, determining variability in molecular signatures based on these interactions between pathways may lead to better diagnostic/treatment strategies for better precision medicine.


Assuntos
Genômica/métodos , Modelos Genéticos , Neoplasias Ovarianas/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Conjuntos de Dados como Assunto , Feminino , Expressão Gênica , Humanos , Pessoa de Meia-Idade , Neoplasias Ovarianas/diagnóstico , Prognóstico
10.
Science ; 351(6274): 737-41, 2016 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-26912863

RESUMO

Many modern human genomes retain DNA inherited from interbreeding with archaic hominins, such as Neandertals, yet the influence of this admixture on human traits is largely unknown. We analyzed the contribution of common Neandertal variants to over 1000 electronic health record (EHR)-derived phenotypes in ~28,000 adults of European ancestry. We discovered and replicated associations of Neandertal alleles with neurological, psychiatric, immunological, and dermatological phenotypes. Neandertal alleles together explained a significant fraction of the variation in risk for depression and skin lesions resulting from sun exposure (actinic keratosis), and individual Neandertal alleles were significantly associated with specific human phenotypes, including hypercoagulation and tobacco use. Our results establish that archaic admixture influences disease risk in modern humans, provide hypotheses about the effects of hundreds of Neandertal haplotypes, and demonstrate the utility of EHR data in evolutionary analyses.


Assuntos
Doença/genética , Homem de Neandertal/genética , Alelos , Animais , Depressão/genética , Evolução Molecular , Variação Genética , Genoma Humano , Haplótipos , Humanos , Ceratose Actínica/genética , Fenótipo , População Branca/genética
11.
Pac Symp Biocomput ; : 495-505, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25741542

RESUMO

Investigating the association between biobank derived genomic data and the information of linked electronic health records (EHRs) is an emerging area of research for dissecting the architecture of complex human traits, where cases and controls for study are defined through the use of electronic phenotyping algorithms deployed in large EHR systems. For our study, cataract cases and controls were identified within the Marshfield Personalized Medicine Research Project (PMRP) biobank and linked EHR, which is a member of the NHGRI-funded electronic Medical Records and Genomics (eMERGE) Network. Our goal was to explore potential gene-gene and gene-environment interactions within these data for 527,953 and 527,936 single nucleotide polymorphisms (SNPs) for gene-gene and gene-environment analyses, respectively, with minor allele frequency > 1%, in order to explore higher level associations with cataract risk beyond investigations of single SNP-phenotype associations. To build our SNP-SNP interaction models we utilized a prior-knowledge driven filtering method called Biofilter to minimize the multiple testing burden of exploring the vast array of interaction models possible from our extensive number of SNPs. Using Biofilter, we developed 57,376 prior-knowledge directed SNP-SNP models to test for association with cataract status. We selected models that required 6 sources of external domain knowledge. We identified 13 statistically significant SNP-SNP models with an interaction with p-value < 1 × 10(-4), as well as an overall model with p-value < 0.01 associated with cataract status. We also conducted gene-environment interaction analyses for all GWAS SNPs and a set of environmental factors from the PhenX Toolkit: smoking, UV exposure, and alcohol use;these environmental factors have been previously associated with the formation of cataracts. We found a total of 782 gene-environment models that exhibit an interaction with a p-value < 1 × 10(-4) associatedwith cataract status. Our results show these approaches enable advanced searches for epistasis and gene-environment interactions beyond GWAS, and that the EHR based approach provides an additional source of data for seeking these advanced explanatory models of the etiology of complex disease/outcome such as cataracts.


Assuntos
Catarata/genética , Algoritmos , Bancos de Espécimes Biológicos , Estudos de Casos e Controles , Biologia Computacional , Bases de Dados Genéticas , Registros Eletrônicos de Saúde , Epistasia Genética , Interação Gene-Ambiente , Estudo de Associação Genômica Ampla , Humanos , Fenótipo , Polimorfismo de Nucleotídeo Único , Software
12.
Pac Symp Biocomput ; : 147-58, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23424120

RESUMO

Investigating the association between biobank derived genomic data and the information of linked electronic health records (EHRs) is an emerging area of research for dissecting the architecture of complex human traits, where cases and controls for study are defined through the use of electronic phenotyping algorithms deployed in large EHR systems. For our study, 2580 cataract cases and 1367 controls were identified within the Marshfield Personalized Medicine Research Project (PMRP) Biobank and linked EHR, which is a member of the NHGRI-funded electronic Medical Records and Genomics (eMERGE) Network. Our goal was to explore potential gene-gene and gene-environment interactions within these data for 529,431 single nucleotide polymorphisms (SNPs) with minor allele frequency > 1%, in order to explore higher level associations with cataract risk beyond investigations of single SNP-phenotype associations. To build our SNP-SNP interaction models we utilized a prior-knowledge driven filtering method called Biofilter to minimize the multiple testing burden of exploring the vast array of interaction models possible from our extensive number of SNPs. Using the Biofilter, we developed 57,376 prior-knowledge directed SNP-SNP models to test for association with cataract status. We selected models that required 6 sources of external domain knowledge. We identified 5 statistically significant models with an interaction term with p-value < 0.05, as well as an overall model with p-value < 0.05 associated with cataract status. We also conducted gene-environment interaction analyses for all GWAS SNPs and a set of environmental factors from the PhenX Toolkit: smoking, UV exposure, and alcohol use; these environmental factors have been previously associated with the formation of cataracts. We found a total of 288 models that exhibit an interaction term with a p-value ≤ 1×10(-4) associated with cataract status. Our results show these approaches enable advanced searches for epistasis and gene-environment interactions beyond GWAS, and that the EHR based approach provides an additional source of data for seeking these advanced explanatory models of the etiology of complex disease/outcome such as cataracts.


Assuntos
Catarata/etiologia , Catarata/genética , Epistasia Genética , Interação Gene-Ambiente , Idoso , Estudos de Casos e Controles , Biologia Computacional , Bases de Dados Genéticas/estatística & dados numéricos , Registros Eletrônicos de Saúde/estatística & dados numéricos , Feminino , Estudo de Associação Genômica Ampla/estatística & dados numéricos , Humanos , Masculino , Pessoa de Meia-Idade , Modelos Genéticos , Modelos Estatísticos , Polimorfismo de Nucleotídeo Único , Software
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA