Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 87
Filtrar
1.
JCO Oncol Pract ; : OP2300594, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38608208

RESUMO

In this article, we defined comprehensive recommendations for the clinical follow-up of pregnant women with a malignancy-suspicious NIPT result, on the basis of the vast experience with population-based NIPT screening programs in two European countries complemented with published large data sets. These recommendations provide a tool for classifying NIPT results as malignancy-suspicious, and guide health care professionals in structured clinical decision making for the diagnostic process of pregnant women who receive such a malignancy-suspicious NIPT result.

2.
Nat Commun ; 15(1): 2220, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38472221

RESUMO

Circulating cell-free DNA (cfDNA) fragments have characteristics that are specific to the cell types that release them. Current methods for cfDNA deconvolution typically use disease tailored marker selection in a limited number of bulk tissues or cell lines. Here, we utilize single cell transcriptome data as a comprehensive cellular reference set for disease-agnostic cfDNA cell-of-origin analysis. We correlate cfDNA-inferred nucleosome spacing with gene expression to rank the relative contribution of over 490 cell types to plasma cfDNA. In 744 healthy individuals and patients, we uncover cell type signatures in support of emerging disease paradigms in oncology and prenatal care. We train predictive models that can differentiate patients with colorectal cancer (84.7%), early-stage breast cancer (90.1%), multiple myeloma (AUC 95.0%), and preeclampsia (88.3%) from matched controls. Importantly, our approach performs well in ultra-low coverage cfDNA datasets and can be readily transferred to diverse clinical settings for the expansion of liquid biopsy.


Assuntos
Ácidos Nucleicos Livres , Humanos , Fragmentação do DNA , Transcriptoma , Biologia , Biomarcadores Tumorais/genética
3.
PLoS One ; 19(3): e0297739, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38457477

RESUMO

In recent years, the importance of isolating single cells from blood circulation for several applications, such as non-invasive tumour diagnosis, the monitoring of minimal residual disease, and the analysis of circulating fetal cells for prenatal diagnosis, urged the need to set up innovative methods. For such applications, different methods were developed. All show some weaknesses, especially a limited sensitivity, and specificity. Here we present a new method for isolating a single or a limited number of cells adhered to SBS slides (Tethis S.p.a.) (a glass slide coated with Nanostructured Titanium Dioxide) by Laser Capture Microdissection (LCM) and subsequent Whole Genome Amplification. SBS slides have been shown to have an optimal performance in immobilizing circulating tumour cells (CTCs) from early breast cancer patients. In this work, we spiked cancer cells in blood samples to mimic CTCs. By defining laser parameters to cut intact samples, we were able to isolate genetically intact single cells. We demonstrate that SBS slides are optimally suited for isolating cells using LCM and that this method provides high-quality DNA, ideal for gene-specific assays such as PCR and Sanger sequencing for mutation analysis.


Assuntos
Células Neoplásicas Circulantes , Gravidez , Feminino , Humanos , Microdissecção e Captura a Laser/métodos , Células Neoplásicas Circulantes/patologia , DNA
4.
Abdom Radiol (NY) ; 48(5): 1590-1598, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37095202

RESUMO

Noninvasive prenatal screening (NIPS) tests for fetal chromosomal anomalies through maternal blood sampling. It is becoming widely available and standard of care for pregnant women in many countries. It is performed in the first trimester of pregnancy, usually between 9 and 12 weeks. Fragments of fetal cell-free deoxyribonucleic acid (DNA) floating in maternal plasma are detected and analyzed by this test to assess for chromosomal aberrations. Similarly, maternal tumor-derived cell-free DNA (ctDNA) released from the tumor cells also circulates in the plasma. Hence, the presence of genomic anomalies originating from maternal tumor-derived DNA may be detected on the NIPS-based fetal risk assessment in pregnant patients. Presence of multiple aneuploidies or autosomal monosomies are the most commonly reported NIPS abnormalities detected with occult maternal malignancies. When such results are received, the search for an occult maternal malignancy begins, in which imaging plays a crucial role. The most commonly detected malignancies via NIPS are leukemia, lymphoma, breast and colon cancers. Ultrasound is a reasonable radiation-free modality for imaging during pregnancy, specially when there are localizing symptoms or findings, such as palpable lumps. While there are no consensus guidelines on the imaging evaluation for these patients, when there are no localizing symptoms or clinically palpable findings, whole body MRI is recommended as the radiation-free modality of choice to search for an occult malignancy. Based on clinical symptoms, practice patterns, and available resources, breast ultrasound, chest radiographs, and targeted ultrasound evaluations can also be performed initially or as a follow-up for MRI findings. CT is reserved for exceptional circumstances due to its higher radiation dose. This article intends to increase awareness of this rare but stressful clinical scenario and guide imaging evaluation for occult malignancy detected via NIPS during pregnancy.


Assuntos
Neoplasias , Teste Pré-Natal não Invasivo , Gravidez , Humanos , Feminino , Diagnóstico Pré-Natal/métodos , Aneuploidia , DNA
5.
Med Genet ; 35(4): 285-295, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38835737

RESUMO

It is now well-established that non-invasive prenatal testing (NIPT), originally designed to screen cell-free DNA (cfDNA) in maternal blood for the presence of common fetal trisomies, can lead to incidental detection of occult maternal malignancies. Retrospective evaluations have demonstrated that the detection of multiple copy number alterations in cfDNA is particularly suggestive of an incipient tumor and that cancer detection rates not only depend on tumor biology but also on applied NIPT technologies and downstream diagnostic investigations. Since the identification of a maternal cancer in pregnancy has implications for both woman and the unborn child, prospective studies are needed to provide evidence on best clinical practices and on clinical utility in terms of patient outcomes.

6.
Hum Reprod Open ; 2022(4): hoac044, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36349144

RESUMO

STUDY QUESTION: How should ART/preimplantation genetic testing (PGT) centres manage the detection of chromosomal mosaicism following PGT? SUMMARY ANSWER: Thirty good practice recommendations were formulated that can be used by ART/PGT centres as a basis for their own policy with regards to the management of 'mosaic' embryos. WHAT IS KNOWN ALREADY: The use of comprehensive chromosome screening technologies has provided a variety of data on the incidence of chromosomal mosaicism at the preimplantation stage of development and evidence is accumulating that clarifies the clinical outcomes after transfer of embryos with putative mosaic results, with regards to implantation, miscarriage and live birth rates, and neonatal outcomes. STUDY DESIGN SIZE DURATION: This document was developed according to a predefined methodology for ESHRE good practice recommendations. Recommendations are supported by data from the literature, a large survey evaluating current practice and published guidance documents. The literature search was performed using PubMed and focused on studies published between 2010 and 2022. The survey was performed through a web-based questionnaire distributed to members of the ESHRE special interest groups (SIG) Reproductive Genetics and Embryology, and the ESHRE PGT Consortium members. It included questions on ART and PGT, reporting, embryo transfer policy and follow-up of transfers. The final dataset represents 239 centres. PARTICIPANTS/MATERIALS SETTING METHODS: The working group (WG) included 16 members with expertise on the ART/PGT process and chromosomal mosaicism. The recommendations for clinical practice were formulated based on the expert opinion of the WG, while taking into consideration the published data and results of the survey. MAIN RESULTS AND THE ROLE OF CHANCE: Eighty percent of centres that biopsy three or more cells report mosaicism, even though only 66.9% of all centres have validated their technology and only 61.8% of these have validated specifically for the calling of chromosomal mosaicism. The criteria for designating mosaicism, reporting and transfer policies vary significantly across the centres replying to the survey. The WG formulated recommendations on how to manage the detection of chromosomal mosaicism in clinical practice, considering validation, risk assessment, designating and reporting mosaicism, embryo transfer policies, prenatal testing and follow-up. Guidance is also provided on the essential elements that should constitute the consent forms and the genetic report, and that should be covered in genetic counselling. As there are several unknowns in chromosomal mosaicism, it is recommended that PGT centres monitor emerging data on the topic and adapt or refine their policy whenever new insights are available from evidence. LIMITATIONS REASONS FOR CAUTION: Rather than providing instant standardized advice, the recommendations should help ART/PGT centres in developing their own policy towards the management of putative mosaic embryos in clinical practice. WIDER IMPLICATIONS OF THE FINDINGS: This document will help facilitate a more knowledge-based approach for dealing with chromosomal mosaicism in different centres. In addition to recommendations for clinical practice, recommendations for future research were formulated. Following up on these will direct research towards existing research gaps with direct translation to clinical practice. Emerging data will help in improving guidance, and a more evidence-based approach of managing chromosomal mosaicism. STUDY FUNDING/COMPETING INTERESTS: The WG received technical support from ESHRE. M.D.R. participated in the EQA special advisory group, outside the submitted work, and is the chair of the PGT WG of the Belgian society for human genetics. D.W. declared receiving salary from Juno Genetics, UK. A.C. is an employee of Igenomix, Italy and C.R. is an employee of Igenomix, Spain. C.S. received a research grant from FWO, Belgium, not related to the submitted work. I.S. declared being a Co-founder of IVFvision Ltd, UK. J.R.V. declared patents related to 'Methods for haplotyping single-cells' and 'Haplotyping and copy number typing using polymorphic variant allelic frequencies', and being a board member of Preimplantation Genetic Diagnosis International Society (PGDIS) and International Society for Prenatal Diagnosis (ISPD). K.S. reported being Chair-elect of ESHRE. The other authors had nothing to disclose. DISCLAIMER: This Good Practice Recommendations (GPR) document represents the views of ESHRE, which are the result of consensus between the relevant ESHRE stakeholders and are based on the scientific evidence available at the time of preparation.  ESHRE GPRs should be used for information and educational purposes. They should not be interpreted as setting a standard of care or be deemed inclusive of all proper methods of care, or be exclusive of other methods of care reasonably directed to obtaining the same results. They do not replace the need for application of clinical judgement to each individual presentation, or variations based on locality and facility type.  Furthermore, ESHRE GPRs do not constitute or imply the endorsement, or favouring, of any of the included technologies by ESHRE.

7.
Genome Biol ; 23(1): 201, 2022 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-36184650

RESUMO

BACKGROUND: During normal zygotic division, two haploid parental genomes replicate, unite and segregate into two biparental diploid blastomeres. RESULTS: Contrary to this fundamental biological tenet, we demonstrate here that parental genomes can segregate to distinct blastomeres during the zygotic division resulting in haploid or uniparental diploid and polyploid cells, a phenomenon coined heterogoneic division. By mapping the genomic landscape of 82 blastomeres from 25 bovine zygotes, we show that multipolar zygotic division is a tell-tale of whole-genome segregation errors. Based on the haplotypes and live-imaging of zygotic divisions, we demonstrate that various combinations of androgenetic, gynogenetic, diploid, and polyploid blastomeres arise via distinct parental genome segregation errors including the formation of additional paternal, private parental, or tripolar spindles, or by extrusion of paternal genomes. Hence, we provide evidence that private parental spindles, if failing to congress before anaphase, can lead to whole-genome segregation errors. In addition, anuclear blastomeres are common, indicating that cytokinesis can be uncoupled from karyokinesis. Dissociation of blastocyst-stage embryos further demonstrates that whole-genome segregation errors might lead to mixoploid or chimeric development in both human and cow. Yet, following multipolar zygotic division, fewer embryos reach the blastocyst stage and diploidization occurs frequently indicating that alternatively, blastomeres with genome-wide errors resulting from whole-genome segregation errors can be selected against or contribute to embryonic arrest. CONCLUSIONS: Heterogoneic zygotic division provides an overarching paradigm for the development of mixoploid and chimeric individuals and moles and can be an important cause of embryonic and fetal arrest following natural conception or IVF.


Assuntos
Blastômeros , Zigoto , Animais , Blastocisto , Bovinos , Feminino , Genoma , Humanos , Mitose
8.
Clin Chem ; 68(9): 1164-1176, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35769009

RESUMO

BACKGROUND: Cell-free DNA (cfDNA) analysis holds great promise for non-invasive cancer screening, diagnosis, and monitoring. We hypothesized that mining the patterns of cfDNA shallow whole-genome sequencing datasets from patients with cancer could improve cancer detection. METHODS: By applying unsupervised clustering and supervised machine learning on large cfDNA shallow whole-genome sequencing datasets from healthy individuals (n = 367) and patients with different hematological (n = 238) and solid malignancies (n = 320), we identified cfDNA signatures that enabled cancer detection and typing. RESULTS: Unsupervised clustering revealed cancer type-specific sub-grouping. Classification using a supervised machine learning model yielded accuracies of 96% and 65% in discriminating hematological and solid malignancies from healthy controls, respectively. The accuracy of disease type prediction was 85% and 70% for the hematological and solid cancers, respectively. The potential utility of managing a specific cancer was demonstrated by classifying benign from invasive and borderline adnexal masses with an area under the curve of 0.87 and 0.74, respectively. CONCLUSIONS: This approach provides a generic analytical strategy for non-invasive pan-cancer detection and cancer type prediction.


Assuntos
Ácidos Nucleicos Livres , Neoplasias , Biomarcadores Tumorais/genética , Humanos , Neoplasias/diagnóstico , Neoplasias/genética , Sequenciamento Completo do Genoma
9.
Genes Chromosomes Cancer ; 61(10): 603-615, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35611992

RESUMO

Development of primary mediastinal B-cell lymphoma (PMBL) is driven by cumulative genomic aberrations. We discovered a unique copy-neutral loss of heterozygosity (CN-LOH) landscape of PMBL which distinguishes this tumor from other B-cell malignancies, including the biologically related diffuse large B-cell lymphoma. Using single nucleotide polymorphism array analysis we identified large-scale CN-LOH lesions in 91% (30/33) of diagnostic PMBLs and both investigated PMBL-derived cell lines. Altogether, the cohort showed 157 extra-large (25.3-248.4 Mb) CN-LOH lesions affecting up to 14 chromosomes per case (mean of 4.4) and resulting in a reduction of heterozygosity an average of 9.9% (range 1.3-51%) of the genome. Predominant involvement of terminal chromosomal segments suggests the implication of B-cell specific crossover events in the pathogenesis of PMBL. Notably, CN-LOH stretches non-randomly clustered on 6p (60%), 15 (37.2%), and 17q (40%), and frequently co-occurred with homozygous mutations in the MHC I (6p21), B2M (15q15), and GNA13 (17q23) genes, respectively, as shown by preliminary whole-exome/genome sequencing data. Altogether, our findings implicate CN-LOH as a novel and distinct mutational process contributing to the molecular pathogenesis of PMBL. The aberration acting as "second hit" in the Knudson hypothesis, ranks as the major mechanism converting to homozygosity the PMBL-related driver genes. Screening of the cohort of 199 B cell leukemia/lymphoma whole-genomes revealed significant differences in the CN-LOH landscape of PMBL and other B-cell malignancies, including the biologically related diffuse large B-cell lymphoma.


Assuntos
Linfoma Difuso de Grandes Células B , Neoplasias do Mediastino , Genômica , Humanos , Perda de Heterozigosidade , Linfoma Difuso de Grandes Células B/diagnóstico , Neoplasias do Mediastino/genética , Mutação
10.
Stud Health Technol Inform ; 294: 829-833, 2022 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-35612220

RESUMO

The complexity and heterogeneity of cancers leads to variable responses of patients to treatments and interventions. Developing models that accurately predict patient's care pathways using prognostic and predictive biomarkers is increasingly important in both clinical practice and scientific research. The main objective of the ATHENA project is to: (1) accelerate data driven precision medicine for two use cases - bladder cancer and multiple myeloma, (2) apply distributed and privacy-preserving analytical methods/ algorithms to stratify patients (decision support), (3) help healthcare professionals deliver earlier and better targeted treatments, and (4) explore care pathway automations and improve outcomes for each patient. Challenges associated with data sharing and integration will be addressed and an appropriate federated data ecosystem will be created, enabling an interoperable foundation for data exchange, analysis and interpretation. By combining multidisciplinary expertise and tackling knowledge gaps in ATHENA, we propose a novel federated privacy preserving platform for oncology research.


Assuntos
Ecossistema , Privacidade , Algoritmos , Governo , Humanos , Medicina de Precisão
11.
Gynecol Oncol Rep ; 39: 100937, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35146105

RESUMO

Background: Breast cancer and hematological cancers are the most commonly diagnosed malignancies during pregnancy. This case report is the first to describe the ultimate challenge to preserve a pregnancy while the expectant mother is diagnosed and treated simultaneously for two concurrent primary malignancies, a stage IIA Hodgkin lymphoma and pT2N0(Sn) breast cancer. Clinical case: A 36-year-old pregnant primigravida underwent a routine non-invasive prenatal test at 14 weeks and 4 days of gestation. Genome-wide sequencing was used and revealed an aberrant DNA/chromosome copy number profile among which a strong 2p-gain, possibly related to a maternal malignancy. Physical examination showed an enlarged cervical lymph node and ultrasound guided biopsy confirmed the diagnosis of a nodular sclerosing classical Hodgkin lymphoma subsequently staged as an early stage, unfavorable (IIA) Hodgkin lymphoma. Whole body magnetic resonance imaging for further staging also indicated a suspicious nodule in the right breast. Further investigation resulted in the concurrent diagnosis of a pT2N0(Sn) invasive ductal adenocarcinoma. Patient underwent a mastectomy with sentinel lymph node biopsy at 15 weeks and 5 days of gestation, followed by 4-weekly chemotherapy administration, consisting of doxorubicin, bleomycin, vinblastine and dacarbazine (ABVD). Pregnancy went further relatively uncomplicated and fetal assessment was reassuring during pregnancy. Due to fever of unknown origin and preterm labor, a cesarean section was performed on a gestational age of 35 weeks and 4 days. Oncological treatment was completed after delivery with involved-field radiation therapy for the Hodgkin lymphoma. Completion of systemic treatment for breast cancer consisted of docetaxel/cyclophosphamide chemotherapy, and anti-hormonal treatment in the form of ovarian function suppression and letrozole. Conclusion: Here we show for the first time that two concurrent primary malignancies can be treated successfully during pregnancy with respect to maternal and fetal chances. Motivated modifications of breast cancer treatment (mastectomy instead of lumpectomy, AVBD instead of epirubicin-cyclophosphamide chemotherapy), allowed treatment of both cancers during pregnancy. Final treatment was administered after delivery.

12.
Am J Hematol ; 97(5): 548-561, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35119131

RESUMO

Acute lymphoblastic leukemia (ALL) is a malignancy that can be subdivided into distinct entities based on clinical, immunophenotypic and genomic features, including mutations, structural variants (SVs), and copy number alterations (CNA). Chromosome banding analysis (CBA) and Fluorescent In-Situ Hybridization (FISH) together with Multiple Ligation-dependent Probe Amplification (MLPA), array and PCR-based methods form the backbone of routine diagnostics. This approach is labor-intensive, time-consuming and costly. New molecular technologies now exist that can detect SVs and CNAs in one test. Here we apply one such technology, optical genome mapping (OGM), to the diagnostic work-up of 41 ALL cases. Compared to our standard testing pathway, OGM identified all recurrent CNAs and SVs as well as additional recurrent SVs and the resulting fusion genes. Based on the genomic profile obtained by OGM, 32 patients could be assigned to one of the major cytogenetic risk groups compared to 23 with the standard approach. The latter identified 24/34 recurrent chromosomal abnormalities, while OGM identified 33/34, misinterpreting only 1 case with low hypodiploidy. The results of MLPA were concordant in 100% of cases. Overall, there was excellent concordance between the results. OGM increased the detection rate and cytogenetic resolution, and abrogated the need for cascade testing, resulting in reduced turnaround times. OGM also provided opportunities for better patient stratification and accurate treatment options. However, for comprehensive cytogenomic testing, OGM still needs to be complemented with CBA or SNP-array to detect ploidy changes and with BCR::ABL1 FISH to assign patients as soon as possible to targeted therapy.


Assuntos
Aberrações Cromossômicas , Leucemia-Linfoma Linfoblástico de Células Precursoras , Mapeamento Cromossômico/métodos , Variações do Número de Cópias de DNA , Humanos , Leucemia-Linfoma Linfoblástico de Células Precursoras/diagnóstico , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Fluxo de Trabalho
13.
Prenat Diagn ; 41(10): 1264-1272, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34405430

RESUMO

Cancer is diagnosed in one in 1000 to 1500 pregnancies. Most frequently encountered malignancies during pregnancy are breast cancer, hematological cancer, cervical cancer and malignant melanoma. Maternal cancer is associated with an increased risk of IUGR and preterm labor, especially in patients with systemic disease or those receiving chemotherapy during pregnancy, requiring a high-risk obstetrical follow-up. Fetal aneuploidy screening by non-invasive prenatal testing (NIPT) can lead to the incidental identification of copy number alterations derived from non-fetal cell-free DNA (cfDNA), as seen in certain cases of maternal malignancy. The identification of tumor-derived cfDNA requires further clinical, biochemical, radiographic and histological investigations to confirm the diagnosis. In such cases, reliable risk estimation for fetal trisomy 21, 18 and 13 is impossible. Therefore, invasive testing should be offered when ultrasonographic screening reveals an increased risk for chromosomal anomalies, or when a more accurate test is desired. When the fetal karyotype is normal, long term implications for the fetus refer to the consequences of the maternal disease and treatment during pregnancy. This manuscript addresses parental questions when NIPT suggests a maternal malignancy. Based on current evidence and our own experience, a clinical management scheme in a multidisciplinary setting is proposed.


Assuntos
Neoplasias/diagnóstico , Teste Pré-Natal não Invasivo/métodos , Pais/psicologia , Adulto , Bélgica/epidemiologia , Transtornos Cromossômicos/diagnóstico , Feminino , Humanos , Neoplasias/complicações , Neoplasias/epidemiologia , Teste Pré-Natal não Invasivo/instrumentação , Gravidez , Estudos Prospectivos
14.
EClinicalMedicine ; 35: 100856, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-34036251

RESUMO

BACKGROUND: Implausible false positive results in non-invasive prenatal testing (NIPT) have been occasionally associated with the detection of occult maternal malignancies. Hence, there is a need for approaches allowing accurate prediction of whether the NIPT result is pointing to an underlying malignancy, as well as for organized programs ensuring efficient downstream clinical management of these cases. METHODS: Using a data set of 88,294 NIPT performed at University Hospital Leuven (Belgium) between November 2013 and March 2020, we retrospectively evaluated the positive predictive value (PPV) of our NIPT approach for cancer detection. In this approach, whole-genome cell-free DNA (cfDNA) data from NIPT were scrutinized for the presence of (sub)chromosomal copy number alterations (CNAs) predictive for a malignancy, using an unbiased NIPT analysis pipeline coined GIPSeq. For suspected cases, the presence of a maternal cancer was evaluated via subsequent multidisciplinary clinical follow-up examinations. The cancer-specificity of the identified CNAs in cfDNA was assessed through genetic analyses of a tumor biopsy. FINDINGS: Fifteen women without a cancer history were identified with a GIPSeq result suggestive of a malignant process. Their cfDNA profiles showed either genome-wide aberrations or a single trisomy 8. Upon clinical examinations, a solid or hematological cancer was identified in 4 and 7 cases, respectively. Three women were identified as having a clonal mosaicism. For one case no underlying condition was found. These numbers add to a PPV of 73%. Based on this experience, we presented a multidisciplinary care path for efficient clinical management of these cases. INTERPRETATION: The presented approach for analysing NIPT results has a high PPV, yet unknown sensitivity, for detecting asymptomatic malignancies upon routine NIPT. Given the complexity of diagnosing a pregnant woman with cancer, clinical follow-up should occur in a well-designed multidisciplinary setting, such as via the care model that we presented here. FUNDING: This work was supported by Research Foundation Flanders and KU Leuven funding.

15.
Cancer Treat Res Commun ; 28: 100380, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33962213

RESUMO

Multiple myeloma (MM), is a heterogeneous disease in which chromosomal abnormalities are important for prognostic risk stratification. Cytogenetic profiling with FISH on plasma cells from bone marrow samples (BM-PCs) is the current gold standard, but variable infiltration of plasma cells or failed aspiration can hamper this process. Ultra-low coverage sequencing (ULCS) of circulating cell-free DNA (ccfDNA) may offer a minimally invasive alternative for the work-up of these cases. We compared ULCS, aCGH and FISH on selected BM-PCs in a routine setting with ULCS of ccfDNA for the detection of somatic copy number aberrations (CNAs) in MM. METHODS: Purified CD138+ BM-PCs of 23 MM patients at initiation of their treatment were subjected to aCGH, FISH and ULCS. Paired samples of peripheral blood-ccfDNA obtained at diagnosis were analyzed by ULCS and compared to the results found in BM-PCs. RESULTS: Using ULCS of ccfDNA, cytogenetic markers were identified in 18 out of 23 patients; five cases could not be analyzed due to low (≤3%) tumor fraction (TF). High similarity between CNA profiles of BM-PCs and ccfDNA was found. Moreover, 78% of the ccfDNA profiles resulted in the same risk classification as the routine FISH and/or BM-PCs ULCS and aCGH. Chromothripsis was detected in five patients; these had the highest TF values (range 7.1% to 42%) in our series and their profiles showed other high-risk anomalies. CONCLUSION: This proof-of-principle study indicates that ULCS of ccfDNA can reveal CNAs in MM and should be explored further as a cost-efficient alternative, especially in cases where BM-PC purification fails.


Assuntos
Ácidos Nucleicos Livres , Mieloma Múltiplo/genética , Sequenciamento Completo do Genoma , Medula Óssea , Variações do Número de Cópias de DNA , Humanos , Hibridização in Situ Fluorescente , Plasmócitos
16.
Blood Adv ; 5(7): 1991-2002, 2021 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-33843986

RESUMO

The low abundance of Hodgkin/Reed-Sternberg (HRS) cells in lymph node biopsies in classical Hodgkin lymphoma (cHL) complicates the analysis of somatic genetic alterations in HRS cells. As circulating cell-free DNA (cfDNA) contains circulating tumor DNA (ctDNA) from HRS cells, we prospectively collected cfDNA from 177 patients with newly diagnosed, mostly early-stage cHL in a monocentric study at Leuven, Belgium (n = 59) and the multicentric BREACH study by Lymphoma Study Association (n = 118). To catalog the patterns and frequencies of genomic copy number aberrations (CNAs), cfDNA was sequenced at low coverage (0.26×), and data were analyzed with ichorCNA to yield read depth-based copy number profiles and estimated clonal fractions in cfDNA. At diagnosis, the cfDNA concentration, estimated clonal fraction, and ctDNA concentration were significantly higher in cHL cases than controls. More than 90% of patients exhibited CNAs in cfDNA. The most frequent gains encompassed 2p16 (69%), 5p14 (50%), 12q13 (50%), 9p24 (50%), 5q (44%), 17q (43%), 2q (41%). Losses mostly affected 13q (57%), 6q25-q27 (55%), 4q35 (50%), 11q23 (44%), 8p21 (43%). In addition, we identified loss of 3p13-p26 and of 12q21-q24 and gain of 15q21-q26 as novel recurrent CNAs in cHL. At diagnosis, ctDNA concentration was associated with advanced disease, male sex, extensive nodal disease, elevated erythrocyte sedimentation rate, metabolic tumor volume, and HRS cell burden. CNAs and ctDNA rapidly diminished upon treatment initiation, and persistence of CNAs was associated with increased probability of relapse. This study endorses the development of ctDNA as gateway to the HRS genome and substrate for early disease response evaluation.


Assuntos
Ácidos Nucleicos Livres , Doença de Hodgkin , Ácidos Nucleicos Livres/genética , Variações do Número de Cópias de DNA , Doença de Hodgkin/diagnóstico , Doença de Hodgkin/genética , Humanos , Masculino , Recidiva Local de Neoplasia , Células de Reed-Sternberg
17.
Prenat Diagn ; 41(5): 554-563, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33524193

RESUMO

Ploidy or genome-wide chromosomal anomalies such as triploidy, diploid/triploid mixoploidy, chimerism, and genome-wide uniparental disomy are the cause of molar pregnancies, embryonic lethality, and developmental disorders. While triploidy and genome-wide uniparental disomy can be ascribed to fertilization or meiotic errors, the mechanisms causing mixoploidy and chimerism remain shrouded in mystery. Different models have been proposed, but all remain hypothetical and controversial, are deduced from the developmental persistent genomic constitutions present in the sample studied and lack direct evidence. New single-cell genomic methodologies, such as single-cell genome-wide haplotyping, provide an extended view of the constitution of normal and abnormal embryos and have further pinpointed the existence of mixoploidy in cleavage-stage embryos. Based on those recent findings, we suggest that genome-wide anomalies, which persist in fetuses and patients, can for a large majority be explained by a noncanonical first zygotic cleavage event, during which maternal and paternal genomes in a single zygote, segregate to different blastomeres. This process, termed heterogoneic division, provides an overarching theoretical basis for the different presentations of mixoploidy and chimerism.


Assuntos
Aneuploidia , Aberrações Cromossômicas/embriologia , Transtornos Cromossômicos/genética , Desenvolvimento Embrionário/genética , Transtornos Cromossômicos/embriologia , Feminino , Humanos , Gravidez , Triploidia
18.
Hum Mol Genet ; 29(21): 3566-3577, 2021 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-33242073

RESUMO

Myotonic dystrophy type 1 (DM1) is caused by expansion of a CTG repeat in the DMPK gene, where expansion size and somatic mosaicism correlates with disease severity and age of onset. While it is known that the mismatch repair protein MSH2 contributes to the unstable nature of the repeat, its role on other disease-related features, such as CpG methylation upstream of the repeat, is unknown. In this study, we investigated the effect of an MSH2 knock-down (MSH2KD) on both CTG repeat dynamics and CpG methylation pattern in human embryonic stem cells (hESC) carrying the DM1 mutation. Repeat size in MSH2 wild-type (MSH2WT) and MSH2KD DM1 hESC was determined by PacBio sequencing and CpG methylation by bisulfite massive parallel sequencing. We found stabilization of the CTG repeat concurrent with a gradual loss of methylation upstream of the repeat in MSH2KD cells, while the repeat continued to expand and upstream methylation remained unchanged in MSH2WT control lines. Repeat instability was re-established and biased towards expansions upon MSH2 transgenic re-expression in MSH2KD lines while upstream methylation was not consistently re-established. We hypothesize that the hypermethylation at the mutant DM1 locus is promoted by the MMR machinery and sustained by a constant DNA repair response, establishing a potential mechanistic link between CTG repeat instability and upstream CpG methylation. Our work represents a first step towards understanding how epigenetic alterations and repair pathways connect and contribute to the DM1 pathology.


Assuntos
Desmetilação , Instabilidade Genômica , Células-Tronco Embrionárias Humanas/patologia , Proteína 2 Homóloga a MutS/antagonistas & inibidores , Distrofia Miotônica/patologia , Miotonina Proteína Quinase/genética , Expansão das Repetições de Trinucleotídeos , Sistemas CRISPR-Cas , Metilação de DNA , Reparo do DNA , Células-Tronco Embrionárias Humanas/metabolismo , Humanos , Proteína 2 Homóloga a MutS/genética , Proteína 2 Homóloga a MutS/metabolismo , Distrofia Miotônica/genética
19.
Clin Chem ; 66(11): 1414-1423, 2020 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-33141904

RESUMO

BACKGROUND: Numerous publications have reported the incidental detection of occult malignancies upon routine noninvasive prenatal testing (NIPT). However, these studies were not designed to evaluate the NIPT performance for cancer detection. METHODS: We investigated the sensitivity of a genome-wide NIPT pipeline, called GIPSeq, for detecting cancer-specific copy number alterations (CNAs) in plasma tumor DNA (ctDNA) of patients with breast cancer. To assess whether a pregnancy itself, with fetal cell-free DNA (cfDNA) in the maternal circulation, might influence the detection of ctDNA, results were compared in pregnant (n = 25) and nonpregnant (n = 25) cancer patients. Furthermore, the ability of GIPSeq to monitor treatment response was assessed. RESULTS: Overall GIPSeq sensitivity for detecting cancer-specific CNAs in plasma cfDNA was 26%. Fifteen percent of detected cases were asymptomatic at the time of blood sampling. GIPSeq sensitivity mainly depended on the tumor stage. Also, triple negative breast cancers (TNBC) were more frequently identified compared to hormone-positive or HER2-enriched tumors. This might be due to the presence of high-level gains and losses of cfDNA or high ctDNA loads in plasma of TNBC. Although higher GIPSeq sensitivity was noted in pregnant (36%) than in nonpregnant women (16%), the limited sample size prohibits a definite conclusion. Finally, GIPSeq profiling of cfDNA during therapy allowed monitoring of early treatment response. CONCLUSIONS: The results underscore the potential of NIPT-based tests, analyzing CNAs in plasma cfDNA in a genome-wide and unbiased fashion for breast cancer detection, cancer subtyping and treatment monitoring in a pregnant and nonpregnant target population.


Assuntos
Neoplasias da Mama/diagnóstico , DNA Tumoral Circulante/sangue , Diagnóstico Pré-Natal/métodos , Adulto , Neoplasias da Mama/sangue , DNA Tumoral Circulante/genética , Variações do Número de Cópias de DNA , Feminino , Testes Genéticos/métodos , Humanos , Estadiamento de Neoplasias , Teste Pré-Natal não Invasivo/métodos , Gravidez
20.
Clin Case Rep ; 8(10): 1924-1927, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33088520

RESUMO

To the authors' best knowledge, this is the first report of acute myeloid leukemia (AML) detected by noninvasive prenatal testing. This was an aggressive case that otherwise would have been difficult to characterize due to disadvantages of "gold-standard" techniques.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA