Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Lab Invest ; 90(7): 1049-59, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20368700

RESUMO

Neutrophils are short-lived cells that rapidly undergo apoptosis. However, their survival can be regulated by signals from the environment. Flagellin, the primary component of the bacterial flagella, is known to induce neutrophil activation. In this study we examined the ability of flagellin to modulate neutrophil apoptosis. Neutrophils cultured for 12 and 24 h in the presence of flagellin from Salmonella typhimurium at concentrations found in pathological situations underwent a marked prevention of apoptosis. In contrast, Helicobacter pylori flagellin did not affect neutrophil survival, suggesting that Salmonella flagellin exerts the antiapoptotic effect by interacting with TLR5. The delaying in apoptosis mediated by Salmonella flagellin was coupled to higher expression levels of the antiapoptotic protein Mcl-1 and lower levels of activated caspase-3. Analysis of the signaling pathways indicated that Salmonella flagellin induced the activation of the p38 and ERK1/2 MAPK pathways as well as the PI3K/Akt pathway. Furthermore, it also stimulated IkappaBalpha degradation and the phosphorylation of the p65 subunit, suggesting that Salmonella flagellin also triggers NF-kappaB activation. Moreover, the pharmacological inhibition of ERK1/2 pathway and NF-kappaB activation partially prevented the antiapoptotic effects exerted by flagellin. Finally, the apoptotic delaying effect exerted by flagellin was also evidenced when neutrophils were cultured with whole heat-killed S. typhimurium. Both a wild-type and an aflagellate mutant S. typhimurium strain promoted neutrophil survival; however, when cultured in low bacteria/neutrophil ratios, the flagellate bacteria showed a higher capacity to inhibit neutrophil apoptosis, although both strains showed a similar ability to induce neutrophil activation. Taken together, our results indicate that flagellin delays neutrophil apoptosis by a mechanism partially dependent on the activation of ERK1/2 MAPK and NF-kappaB. The ability of flagellin to delay neutrophil apoptosis could contribute to perpetuate the inflammation during infections with flagellated bacteria.


Assuntos
Apoptose/efeitos dos fármacos , Flagelina/farmacologia , Neutrófilos/efeitos dos fármacos , Caspase 3/metabolismo , Sobrevivência Celular , Células Cultivadas , Flagelos/fisiologia , Humanos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Proteína de Sequência 1 de Leucemia de Células Mieloides , NF-kappa B/metabolismo , Neutrófilos/enzimologia , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Infecções por Salmonella/imunologia , Salmonella typhimurium/fisiologia
2.
Nat Immunol ; 10(9): 981-91, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19668220

RESUMO

Despite their central function in orchestrating immunity, dendritic cells (DCs) can respond to inhibitory signals by becoming tolerogenic. Here we show that galectin-1, an endogenous glycan-binding protein, can endow DCs with tolerogenic potential. After exposure to galectin-1, DCs acquired an interleukin 27 (IL-27)-dependent regulatory function, promoted IL-10-mediated T cell tolerance and suppressed autoimmune neuroinflammation. Consistent with its regulatory function, galectin-1 had its highest expression on DCs exposed to tolerogenic stimuli and was most abundant from the peak through the resolution of autoimmune pathology. DCs lacking galectin-1 had greater immunogenic potential and an impaired ability to halt inflammatory disease. Our findings identify a tolerogenic circuit linking galectin-1 signaling, IL-27-producing DCs and IL-10-secreting T cells, which has broad therapeutic implications in immunopathology.


Assuntos
Células Dendríticas/fisiologia , Galectina 1/fisiologia , Tolerância Imunológica , Interleucina-10/fisiologia , Linfócitos T/imunologia , Animais , Antígenos CD40/fisiologia , Encefalomielite Autoimune Experimental/etiologia , Feminino , Galectina 1/genética , Regulação da Expressão Gênica , Glicoproteínas/imunologia , Interleucinas/fisiologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Glicoproteína Mielina-Oligodendrócito , Fragmentos de Peptídeos/imunologia , Fator de Transcrição STAT3/fisiologia
3.
Mol Immunol ; 46(1): 37-44, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18701168

RESUMO

We have previously demonstrated that bacterial DNA induces neutrophil activation through a CpG- and TLR9-independent but MyD88-dependent-pathway. In this study we determined that GM-CSF enhances the activation of neutrophils by bacterial DNA. Granulocyte-macrophage colony-stimulating factor increased IL-8 and IL-1beta secretion, and CD11b-upregulation induced by single-stranded bacterial DNA. It also enhanced neutrophil IL-8 production induced by double-stranded bacterial DNA, methylated single-stranded DNA, plasmid DNA, and phosphorothioated-CpG and non-CpG-oligodeoxynucleotides. Together these observations indicated that GM-CSF enhances neutrophil responses triggered by bacterial DNA in a CpG-independent fashion. We also found that GM-CSF enhanced the activation of the MAPKs p38 and ERK1/2 induced by bacterial DNA. Moreover, the pharmacological inhibition of these pathways significantly diminished GM-CSF ability to increase neutrophil activation by bacterial DNA. Finally, we observed that GM-CSF was unable to increase the activation of MyD88(-/-) neutrophils by bacterial DNA. Our findings suggest that GM-CSF modulates the CpG-independent, MyD88-dependent neutrophil response to bacterial DNA, by increasing the activation of the MAPKs p38 and ERK1/2.


Assuntos
Ilhas de CpG/genética , DNA Bacteriano/farmacologia , Fator Estimulador de Colônias de Granulócitos e Macrófagos/farmacologia , Ativação de Neutrófilo/efeitos dos fármacos , Neutrófilos/efeitos dos fármacos , Neutrófilos/imunologia , Animais , Antígeno CD11b/metabolismo , Ativação Enzimática/efeitos dos fármacos , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Humanos , Interleucina-8/biossíntese , Camundongos , Camundongos Endogâmicos C57BL , Fator 88 de Diferenciação Mieloide/metabolismo , NF-kappa B/metabolismo , Neutrófilos/enzimologia , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
4.
FASEB J ; 17(3): 491-3, 2003 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-12514109

RESUMO

Here we analyze the role of the angiotensinergic system in the differentiation of dendritic cells (DC). We found that human monocytes produce angiotensin II (AII) and express AT1 and AT2 receptors for AII. DC differentiated from human monocytes in the presence of AT1 receptor antagonists losartan or candesartan show very low levels of CD1a expression and poor endocytic and allostimulatory activities. By contrast, DC differentiation in the presence of either the AT2 receptor antagonist PD 123319 or exogenous AII results in the development of nonadherent cells with CD1a expression and endocytic and allostimulatory activities higher than control DC. Similar contrasting effects were observed in mouse DC obtained from bone marrow cultures supplemented with granulocyte-monocyte colony-stimulating factor. DC differentiated in the presence of the AT1 receptor antagonist losartan express lower levels of CD11c, CD40, and Ia and display a lower ability to endocyte horseradish peroxidase (HRP) and to induce antibody responses in vivo, compared with controls. By contrast, DC differentiation in the presence of either the AT2 receptor antagonist PD 123319 or exogenous AII results in cells with high levels of CD11c, CD40, and Ia, as well as high ability to endocyte HRP and to induce antibody responses in vivo. Our results support the notion that the differentiation of DC is regulated by AII.


Assuntos
Angiotensina II/fisiologia , Células Dendríticas/fisiologia , Angiotensina II/metabolismo , Antagonistas de Receptores de Angiotensina , Animais , Anticorpos/metabolismo , Benzimidazóis/farmacologia , Compostos de Bifenilo/farmacologia , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Células Dendríticas/citologia , Células Dendríticas/efeitos dos fármacos , Endocitose , Células-Tronco Hematopoéticas/fisiologia , Humanos , Irbesartana , Losartan/farmacologia , Ativação Linfocitária , Camundongos , Modelos Biológicos , Monócitos , Fenótipo , Receptor Tipo 1 de Angiotensina , Receptor Tipo 2 de Angiotensina , Receptores de Angiotensina/metabolismo , Tetrazóis/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA