Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biomater Sci ; 12(15): 3866-3881, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-38910521

RESUMO

Cardiac tissue engineering (cTE) has already advanced towards the first clinical trials, investigating safety and feasibility of cTE construct transplantation in failing hearts. However, the lack of well-established preservation methods poses a hindrance to further scalability, commercialization, and transportation, thereby reducing their clinical implementation. In this study, hypothermic preservation (4 °C) and two methods for cryopreservation (i.e., a slow and fast cooling approach to -196 °C and -150 °C, respectively) were investigated as potential solutions to extend the cTE construct implantation window. The cTE model used consisted of human induced pluripotent stem cell-derived cardiomyocytes and human cardiac fibroblasts embedded in a natural-derived hydrogel and supported by a polymeric melt electrowritten hexagonal scaffold. Constructs, composed of cardiomyocytes of different maturity, were preserved for three days, using several commercially available preservation protocols and solutions. Cardiomyocyte viability, function (beat rate and calcium handling), and metabolic activity were investigated after rewarming. Our observations show that cardiomyocytes' age did not influence post-rewarming viability, however, it influenced construct function. Hypothermic preservation with HypoThermosol® ensured cardiomyocyte viability and function. Furthermore, fast freezing outperformed slow freezing, but both viability and function were severely reduced after rewarming. In conclusion, whereas long-term preservation remains a challenge, hypothermic preservation with HypoThermosol® represents a promising solution for cTE construct short-term preservation and potential transportation, aiding in off-the-shelf availability, ultimately increasing their clinical applicability.


Assuntos
Criopreservação , Miócitos Cardíacos , Engenharia Tecidual , Humanos , Miócitos Cardíacos/citologia , Sobrevivência Celular/efeitos dos fármacos , Alicerces Teciduais/química , Células-Tronco Pluripotentes Induzidas/citologia , Células Cultivadas , Hidrogéis/química , Hidrogéis/farmacologia
2.
Bioconjug Chem ; 34(12): 2375-2386, 2023 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-38079189

RESUMO

Nanocarriers have shown their ability to extend the circulation time of drugs, enhance tumor uptake, and tune drug release. Therapeutic peptides are a class of drug compounds in which nanocarrier-mediated delivery can potentially improve their therapeutic index. To this end, there is an urgent need for orthogonal covalent linker chemistry facilitating the straightforward on-the-resin peptide generation, nanocarrier conjugation, as well as the triggered release of the peptide in its native state. Here, we present a copper-free clickable ring-strained alkyne linker conjugated to the N-terminus of oncolytic peptide LTX-315 via standard solid-phase peptide synthesis (SPPS). The linker contains (1) a recently developed seven-membered ring-strained alkyne, 3,3,6,6-tetramethylthiacycloheptyne sulfoximine (TMTHSI), (2) a disulfide bond, which is sensitive to the reducing cytosolic and tumor environment, and (3) a thiobenzyl carbamate spacer enabling release of the native peptide upon cleavage of the disulfide via 1,6-elimination. We demonstrate convenient "clicking" of the hydrophilic linker-peptide conjugate to preformed pegylated core-cross-linked polymeric micelles (CCPMs) of 50 nm containing azides in the hydrophobic core under aqueous conditions at room temperature resulting in a loading capacity of 8 mass % of peptide to polymer (56% loading efficiency). This entrapment of hydrophilic cargo into/to a cross-linked hydrophobic core is a new and counterintuitive approach for this class of nanocarriers. The release of LTX-315 from the CCPMs was investigated in vitro and rapid release upon exposure to glutathione (within minutes) followed by slower 1,6-elimination (within an hour) resulted in the formation of the native peptide. Finally, cytotoxicity of LTX CCPMs as well as uptake of sulfocyanine 5-loaded CCPMs was investigated by cell culture, demonstrating successful tumor cell killing at concentrations similar to that of the free peptide treatment.


Assuntos
Portadores de Fármacos , Neoplasias , Humanos , Portadores de Fármacos/química , Peptídeos/uso terapêutico , Micelas , Polímeros/química , Neoplasias/tratamento farmacológico , Oxirredução , Alcinos/química , Dissulfetos/química
3.
Mol Pharm ; 20(11): 5515-5531, 2023 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-37811785

RESUMO

Ovarian cancer is one of the most lethal gynecological cancers in the world. In recent years, nucleic acid (NA)-based formulations have been shown to be promising treatments for ovarian cancer, including tumor nodules. However, gene therapy is not that far advanced in clinical reality due to unfavorable physicochemical properties of the NAs, such as high molecular weight, poor cellular uptake, rapid degradation by nucleases, etc. One of the strategies used to overcome these drawbacks is the complexation of anionic NAs via electrostatic interactions with cationic polymers, resulting in the formation of so-called polyplexes. In this work, the role of the size of pDNA and siRNA polyplexes on their penetration into ovarian-cancer-based tumor spheroids was investigated. For this, a methoxypoly(ethylene glycol) poly(2-(dimethylamino)ethyl methacrylate) (mPEG-pDMAEMA) diblock copolymer was synthesized as a polymeric carrier for NA binding and condensation with either plasmid DNA (pDNA) or short interfering RNA (siRNA). When prepared in HEPES buffer (10 mM, pH 7.4) at a nitrogen/phosphate (N/P) charge ratio of 5 and pDNA polyplexes were formed with a size of 162 ± 11 nm, while siRNA-based polyplexes displayed a size of 25 ± 2 nm. The polyplexes had a slightly positive zeta potential of +7-8 mV in the same buffer. SiRNA and pDNA polyplexes were tracked in vitro into tumor spheroids, resembling in vivo avascular ovarian tumor nodules. For this purpose, reproducible spheroids were obtained by coculturing ovarian carcinoma cells with primary mouse embryonic fibroblasts in different ratios (5:2, 1:1, and 2:5). Penetration studies revealed that after 24 h of incubation, siRNA polyplexes were able to penetrate deeper into the homospheroids (composed of only cancer cells) and heterospheroids (cancer cells cocultured with fibroblasts) compared to pDNA polyplexes which were mainly located in the rim. The penetration of the polyplexes was slowed when increasing the fraction of fibroblasts present in the spheroids. Furthermore, in the presence of serum siRNA polyplexes encoding for luciferase showed a high cellular uptake in 2D cells resulting in ∼50% silencing of luciferase expression. Taken together, these findings show that self-assembled small siRNA polyplexes have good potential as a platform to test ovarian tumor nodulus penetration..


Assuntos
Fibroblastos , Neoplasias Ovarianas , Animais , Camundongos , Feminino , Humanos , Polímeros/química , DNA/química , RNA Interferente Pequeno/química , Neoplasias Ovarianas/terapia , Luciferases
4.
Chem Commun (Camb) ; 59(76): 11397-11400, 2023 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-37668179

RESUMO

The site specific attachment of the reactive TMTHSI-click handle to the N-terminus of peptides and proteins is described. The resulting molecular constructs can be used in strain-promoted azide alkyne cycloaddition (SPAAC) for reaction with azide containing proteins e.g., antibodies, peptides, nanoparticles, fluorescent dyes, chelators for radioactive isotopes and SPR-chips etc.


Assuntos
Azidas , Peptídeos , Reação de Cicloadição , Anticorpos , Alcinos
5.
Langmuir ; 39(34): 12132-12143, 2023 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-37581242

RESUMO

Core-crosslinked polymeric micelles (CCPMs) are an attractive class of nanocarriers for drug delivery. Two crosslinking approaches to form CCPMs exist: either via a low-molecular-weight crosslinking agent to connect homogeneous polymer chains with reactive handles or via cross-reactive handles on polymers to link them to each other (complementary polymers). Previously, CCPMs based on methoxy poly(ethylene glycol)-b-poly[N-(2-hydroxypropyl) methacrylamide-lactate] (mPEG-b-PHPMAmLacn) modified with thioesters were crosslinked via native chemical ligation (NCL, a reaction between a cysteine residue and thioester resulting in an amide bond) using a bifunctional cysteine containing crosslinker. These CCPMs are degradable under physiological conditions due to hydrolysis of the ester groups present in the crosslinks. The rapid onset of degradation observed previously, as measured by the light scattering intensity, questions the effectiveness of crosslinking via a bifunctional agent. Particularly due to the possibility of intrachain crosslinks that can occur using such a small crosslinker, we investigated the degradation mechanism of CCPMs generated via both approaches using various analytical techniques. CCPMs based on complementary polymers degraded slower at pH 7.4 and 37 °C than CCPMs with a crosslinker (the half-life of the light scattering intensity was approximately 170 h versus 80 h, respectively). Through comparative analysis of the degradation profiles of the two different CCPMs, we conclude that partially ineffective intrachain crosslinks are likely formed using the small crosslinker, which contributed to more rapid CCPM degradation. Overall, this study shows that the type of crosslinking approach can significantly affect degradation kinetics, and this should be taken into consideration when developing new degradable CCPM platforms.


Assuntos
Cisteína , Micelas , Polímeros/química , Polietilenoglicóis/química , Sistemas de Liberação de Medicamentos , Hidrólise
6.
ACS Polym Au ; 3(1): 118-131, 2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36785837

RESUMO

The aim of this study was to develop an injectable hydrogel delivery system for sustained ocular delivery of dexamethasone. To this end, a self-healing hydrogel consisting of a thermosensitive ABA triblock copolymer was designed. The drug was covalently linked to the polymer by copolymerization of methacrylated dexamethasone with N-isopropylacrylamide (NIPAM) and N-acryloxysuccinimide (NAS) through reversible addition-fragmentation chain transfer (RAFT) polymerization, using poly(ethylene glycol) (PEG) functionalized at both ends with a chain transfer agent (CTA). Hydrogel formation was achieved by mixing aqueous solutions of the formed thermosensitive polymer (with a cloud point of 23 °C) with cystamine at 37 °C, to result in covalent cross-linking due to the reaction of the N-hydroxysuccimide (NHS) functionality of the polymer and the primary amines of cystamine. Rheological analysis showed both thermogelation and covalent cross-linking at 37 °C, as well as the self-healing properties of the formed network, which was attributed to the presence of disulfide bonds in the cystamine cross-links, making the system injectable. The release of dexamethasone from the hydrogel occurred through ester hydrolysis following first-order kinetics in an aqueous medium at pH 7.4 over 430 days at 37 °C. Based on simulations, administration of 100 mg of hydrogel would be sufficient for maintaining therapeutic levels of dexamethasone in the vitreous for at least 500 days. Importantly, dexamethasone was released from the hydrogel in its native form as determined by LC-MS analysis. Cytocompatibility studies showed that at clinically relevant concentrations, both the polymer and the cross-linker were well tolerated by adult retinal pigment epithelium (ARPE-19) cells. Moreover, the hydrogel did not show any toxicity to ARPE-19 cells. The injectability of the hydrogel, together with the long-lasting release of dexamethasone and good cytocompatibility with a retinal cell line, makes this delivery system an attractive candidate for treatment of ocular inflammatory diseases.

7.
Biomacromolecules ; 24(10): 4385-4396, 2023 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-36044412

RESUMO

Polymeric micelles (PMs) are promising platforms for enhanced tissue targeting of entrapped therapeutic agents. Strategies to circumvent premature release of entrapped drugs include cross-linking of the micellar core as well as covalent attachment of the drug cargo. The chemistry employed to obtain cross-linked micelles needs to be mild to also allow entrapment of fragile molecules, such as certain peptides, proteins, oligonucleotides, and fluorescent dyes. Native chemical ligation (NCL) is a mild bio-orthogonal reaction between a N-terminal cysteine residue and a thioester that proceeds under physiological conditions. Here, we designed a trifunctional cross-linker containing two cysteine residues for the micelle core-cross-linking reaction and an azide residue for ring-strained alkyne conjugation of fluorescent dyes. We applied this approach to thermosensitive methoxypolyethylene glycol-b-N-(2-hydroxypropyl)methacrylamide-lactate (mPEG-b-HPMAmLacn) based block copolymers of a core-cross-linked polymeric micelle (CCPM) system by attaching thioester residues (using ethyl thioglycolate-succinic anhydride, ETSA) for NCL cross-linking with the trifunctional cross-linker under physiological conditions. By use of mild copper-free click chemistry, we coupled fluorescent dyes, Sulfo.Cy5 and BODIPY, to the core via the azide residue present on the cross-linker by triazole ring formation. In addition, we employed a recently developed cycloheptyne strain promoted click reagent (TMTHSI, CliCr) in comparison to the frequently employed cyclooctyne derivative (DBCO), both achieving successful dye entrapment. The size of the resulting CCPMs could be tuned between 50 and 100 nm by varying the molecular weight of the thermosensitive block and ETSA content. In vitro cell experiments showed successful internalization of the dye entrapped CCPMs, which did not affect cell viability up to a polymer concentration of 2 mg/mL in PC3 cells. These fluorescent dye entrapped CCPMs can be applied in diagnostic imaging and the chemistry developed in this study serves as a steppingstone toward covalently entrapped fragile drug compounds with tunable release in CCPMs.


Assuntos
Corantes Fluorescentes , Micelas , Corantes Fluorescentes/química , Azidas , Cisteína , Polímeros/química , Polietilenoglicóis/química
8.
Bioconjug Chem ; 33(9): 1707-1715, 2022 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-35979909

RESUMO

Core-cross-linked polymeric micelles (CCPMs) are a promising nanoparticle platform due to favorable properties such as their long circulation and tumor disposition exploiting the enhanced permeability and retention (EPR) effect. Sustained release of covalently linked drugs from the hydrophobic core of the CCPM can be achieved by a biodegradable linker that connects the drug and the core. This study investigates the suitability of trityl-based linkers for the design of acid-triggered native active pharmaceutical ingredient (API) release from CCPMs. Trityl linker derivatives with different substituent patterns were synthesized and conjugated to model API compounds such as DMXAA-amine, doxorubicin, and gemcitabine, and their release kinetics were studied. Hereafter, API release from CCPMs based on mPEG-b-pHPMAmLac block copolymers was investigated. Variation of the trityl substitution pattern showed tunability of the API release rate from the trityl-based linker with t1/2 varying from <1.0 to 5.0 h at pH 5.0 and t1/2 from 6.5 to >24 h at pH 7.4, all at 37 °C. A clear difference in release kinetics was found between gemcitabine and doxorubicin, with gemcitabine showing no detectable release for 72 h at pH 5.0 and doxorubicin showing a t1/2 of less than 1 h. Based on these findings, we show that the reaction mechanism of trityl deprotection plays an important role in the API release kinetics. The first step in this mechanism, which is protonation of the trityl-bound amine, is pKa-dependent, which explains the difference in release rate. In conclusion, acid-sensitive and tunable trityl linkers are highly promising for the design of linker-API conjugates and for their use in CCPMs.


Assuntos
Doxorrubicina , Micelas , Aminas , Preparações de Ação Retardada/química , Doxorrubicina/química , Portadores de Fármacos/química , Liberação Controlada de Fármacos , Concentração de Íons de Hidrogênio , Polietilenoglicóis/química , Polímeros/química
9.
Acta Biomater ; 146: 145-158, 2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35562007

RESUMO

Adequate treatment of pain arising from spinal surgery is a major clinical challenge. Opioids are the mainstay of current treatment methods, but the frequency and severity of their side effects display a clear need for opioid-free analgesia. Local anesthetics have been encapsulated into sustained-release drug delivery systems to provide postoperative pain relief. However, these formulations are limited by rapid diffusion out of the surgical site. To overcome this limitation, we synthesized ring-shaped hydrogels incorporating bupivacaine, designed to be co-implanted with pedicle screws during spinal surgery. Hydrogels were prepared by riboflavin-mediated crosslinking of gelatin functionalized with tyramine moieties. Additionally, oxidized ß-cyclodextrin was introduced into the hydrogel formulation to form dynamic bonds with tyramine functionalities, which enables self-healing behavior and resistance to shear. Feasibility of hydrogel implantation combined with pedicle screws was qualitatively assessed in cadaveric sheep as a model for instrumented spinal surgery. The in-situ crystallization of bupivacaine within the hydrogel matrix provided a moderate burst decrease and sustained release that exceeded 72 hours in vitro. The use of bupivacaine crystals decreased drug-induced cytotoxicity in vitro compared to bupivacaine HCl. Thus, the presented robust hydrogel formulation provides promising properties to enable the stationary release of non-opioid analgesics following spinal surgery. STATEMENT OF SIGNIFICANCE: Currently, postoperative pain following spinal surgery is mainly treated with opioids. However, the use of opioids is associated with several side effects including addiction. Here we developed robust and cytocompatible gelatin hydrogels, prepared via riboflavin-mediated photocrosslinking, that can withstand orthopedic implantation. The implantability was confirmed in cadaveric instrumented spinal surgery. Further, hydrogels were loaded with bupivacaine crystals to provide sustained release beyond 72 hours in vitro. The use of crystallized bupivacaine decreased cytotoxicity compared to bupivacaine HCl. The present formulation can aid in enabling opioid-free analgesia following instrumented spinal surgery.


Assuntos
Bupivacaína , Gelatina , Analgésicos Opioides/efeitos adversos , Animais , Bupivacaína/farmacologia , Cadáver , Preparações de Ação Retardada/química , Gelatina/química , Humanos , Hidrogéis/química , Dor Pós-Operatória/tratamento farmacológico , Riboflavina , Ovinos , Tiramina
10.
Bioconjug Chem ; 33(1): 4-23, 2022 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-34894666

RESUMO

For the past two decades, atomic gold nanoclusters (AuNCs, ultrasmall clusters of several to 100 gold atoms, having a total diameter of <2 nm) have emerged as promising agents in the diagnosis and treatment of cancer. Owing to their small size, significant quantization occurs to their conduction band, which leads to emergent photonic properties and the disappearance of the plasmonic responses observed in larger gold nanoparticles. For example, AuNCs exhibit native luminescent properties, which have been well-explored in the literature. Using proteins, peptides, or other biomolecules as structural scaffolds or capping ligands, required for the stabilization of AuNCs, improves their biocompatibility, while retaining their distinct optical properties. This paved the way for the use of AuNCs in fluorescent bioimaging, which later developed into multimodal imaging combined with computer tomography and magnetic resonance imaging as examples. The development of AuNC-based systems for diagnostic applications in cancer treatment was then made possible by employing active or passive tumor targeting strategies. Finally, the potential therapeutic applications of AuNCs are extensive, having been used as light-activated and radiotherapy agents, as well as nanocarriers for chemotherapeutic drugs, which can be bound to the capping ligand or directly to the AuNCs via different mechanisms. In this review, we present an overview of the diverse biomedical applications of AuNCs in terms of cancer imaging, therapy, and combinations thereof, as well as highlighting some additional applications relevant to biomedical research.


Assuntos
Ouro
11.
Nanoscale ; 12(18): 10347-10360, 2020 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-32369076

RESUMO

One of the challenges for the clinical translation of RNA interference (RNAi)-based therapies concerns the deposition of therapeutically effective doses of the nucleic acids, like siRNA, at a local tissue level without severe off-target effects. To address this issue, hydrogels can be used as matrices for the local and sustained release of the siRNA cargo. In this study, the formation of polyplexes based on siRNA and poly(2-dimethylaminoethyl methacrylate) (PDMAEMA)-based polymers was investigated, followed by their loading in a thermosensitive hydrogel to promote local siRNA release. A multifunctional NPD triblock copolymer consisting of a thermosensitive poly(N-isopropylacrylamide) (PNIPAM, N), a hydrophilic poly(ethylene glycol) (PEG, P), and a cationic PDMAEMA (D) block was used to study the binding properties with siRNA taking the non-thermosensitive PD polymer as control. For both polymers, small polyplexes with sizes ranging from 10-20 nm were formed in aqueous solution (HBS buffer, 20 mM HEPES, 150 mM NaCl, pH 7.4) when prepared at a N/P charge ratio of 5 or higher. Formulating the siRNA into NPD or PD polyplexes before loading into the thermosensitive PNIPAM-PEG-PNIPAM hydrogel resulted in a more controlled and sustained release compared to free siRNA release from the hydrogel. The polyplexes were released for 128 hours in HBS, when changing the release medium twice a day, while free siRNA was completely released within 50 hours with already 40% being released after changing the release medium just once. The release of the polyplexes was dependent on the dissolution rate of the hydrogel matrix. Moreover, intact polyplexes were released from the hydrogels with a similar size as before loading, suggesting that the hydrogel material did not compromise the polyplex stability. Finally, it was shown that the released polyplexes were still biologically active and transfected FaDu cells, which was observed by siRNA-induced luciferase silencing in vitro. This study shows the development of an injectable thermosensitive hydrogel to promote local and sustained release of siRNA, which can potentially be used to deliver siRNA for various applications, such as the treatment of tumors.


Assuntos
Hidrogéis/química , RNA Interferente Pequeno/metabolismo , Linhagem Celular Tumoral , Humanos , Luciferases/antagonistas & inibidores , Luciferases/genética , Luciferases/metabolismo , Metacrilatos/química , Nylons/química , Polietilenoglicóis/química , Polímeros/síntese química , Polímeros/química , Interferência de RNA , RNA Interferente Pequeno/química , Transfecção
12.
Nat Commun ; 11(1): 1267, 2020 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-32152307

RESUMO

Three-dimensional (3D) hydrogel printing enables production of volumetric architectures containing desired structures using programmed automation processes. Our study reports a unique method of resolution enhancement purely relying on post-printing treatment of hydrogel constructs. By immersing a 3D-printed patterned hydrogel consisting of a hydrophilic polyionic polymer network in a solution of polyions of the opposite net charge, shrinking can rapidly occur resulting in various degrees of reduced dimensions comparing to the original pattern. This phenomenon, caused by complex coacervation and water expulsion, enables us to reduce linear dimensions of printed constructs while maintaining cytocompatible conditions in a cell type-dependent manner. We anticipate our shrinking printing technology to find widespread applications in promoting the current 3D printing capacities for generating higher-resolution hydrogel-based structures without necessarily having to involve complex hardware upgrades or other printing parameter alterations.


Assuntos
Fenômenos Biomecânicos , Bioimpressão/métodos , Hidrogéis/química , Impressão Tridimensional , Engenharia Tecidual/métodos , Animais , Materiais Biocompatíveis/química , Quitosana , Gelatina , Humanos , Células MCF-7 , Metacrilatos , Camundongos , Polímeros/química , Impressão Tridimensional/instrumentação , Engenharia Tecidual/instrumentação , Alicerces Teciduais/química
13.
Biomacromolecules ; 21(5): 1739-1751, 2020 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-31945299

RESUMO

In this study, a new type of injectable hydrogel called "HyMic" that can convert into core cross-linked (CCL) micelles upon exposure to matrix metalloproteinases (MMP's), was designed and developed for drug delivery applications. HyMic is composed of CCL micelles connected via an enzyme cleavable linker. To this end, two complementary ABA block copolymers with polyethylene glycol (PEG) as B block were synthesized using atom transfer radical polymerization (ATRP). The A blocks were composed of a random copolymer of N-isopropylacrylamide (NIPAM) and either N-(2-hydroxypropyl)methacrylamide-cysteine (HPMA-Cys) or N-(2-hydroxypropyl) methacrylamide-ethylthioglycolate succinic acid (HPMA-ETSA). Mixing the aqueous solutions of the obtained polymers and rising the temperature above the cloud point of the PNIPAM block resulted in the self-assembly of these polymers into flower-like micelles composed of a hydrophilic PEG shell and hydrophobic core. The micellar core was cross-linked by native chemical ligation between the cysteine (in HPMA-Cys) and thioester (in HPMA-ETSA) functionalities. A slight excess of thioester to cysteine groups (molar ratio 3:2) was used to allow further chemical reactions exploiting the unreacted thioester groups. The obtained micelles displayed a Z-average diameter of 80 ± 1 nm (PDI 0.1), and ζ-potential of -4.2 ± 0.4 mV and were linked using two types of pentablock copolymers of P(NIPAM-co-HPMA-Cys)-PEG-peptide-PEG-P(NIPAM-co-HPMA-Cys) (Pep-NC) to yield hydrogels. The pentablock copolymers were synthesized using a PEG-peptide-PEG ATRP macroinitiator and the peptide midblock (lysine-glycine-proline-glutamine-isoleucine-phenylalanine-glycine-glutamine-lysine (Lys-Gly-Pro-Gln-Gly-Ile-Phe-Gly-Gln-Lys)) consisted of either l- or d-amino acids (l-Pep-NC or d-Pep-NC), of which the l-amino acid sequence is a substrate for matrix metalloproteases 2 and 9 (MMPs 2 and 9). Upon mixing of the CCL micelles and the linker (l/d-Pep-NC), the cysteine functionalities of the l/d-Pep-NC reacted with remaining thioester moieties in the micellar core via native chemical ligation yielding a hydrogel within 160 min as demonstrated by rheological measurements. As anticipated, the gel cross-linked with l-Pep-NC was degraded in 7-45 days upon exposure to metalloproteases in a concentration-dependent manner, while the gel cross-linked with the d-Pep-NC remained intact even after 2 months. Dynamic light scattering analysis of the release medium revealed the presence of nanoparticles with a Z-average diameter of ∼120 nm (PDI < 0.3) and ζ-potential of ∼-3 mV, indicating release of core cross-linked micelles upon HyMic exposure to metalloproteases. An in vitro study demonstrated that the released CCL micelles were taken up by HeLa cells. Therefore, HyMic as an injectable and enzyme degradable hydrogel displaying controlled and on-demand release of CCL micelles has potential for intracellular drug delivery in tissues with upregulation of MMPs, for example, in cancer tissues.


Assuntos
Hidrogéis , Micelas , Células HeLa , Humanos , Metaloproteinases da Matriz , Polietilenoglicóis
14.
Biofabrication ; 12(2): 025014, 2020 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-31918421

RESUMO

Multi-material 3D printing technologies that resolve features at different lengths down to the microscale open new avenues for regenerative medicine, particularly in the engineering of tissue interfaces. Herein, extrusion printing of a bone-biomimetic ceramic ink and melt electrowriting (MEW) of spatially organized polymeric microfibres are integrated for the biofabrication of an osteochondral plug, with a mechanically reinforced bone-to-cartilage interface. A printable physiological temperature-setting bioceramic, based on α-tricalcium phosphate, nanohydroxyapatite and a custom-synthesized biodegradable and crosslinkable poloxamer, was developed as bone support. The mild setting reaction of the bone ink enabled us to print directly within melt electrowritten polycaprolactone meshes, preserving their micro-architecture. Ceramic-integrated MEW meshes protruded into the cartilage region of the composite plug, and were embedded with mechanically soft gelatin-based hydrogels, laden with articular cartilage chondroprogenitor cells. Such interlocking design enhanced the hydrogel-to-ceramic adhesion strength >6.5-fold, compared with non-interlocking fibre architectures, enabling structural stability during handling and surgical implantation in osteochondral defects ex vivo. Furthermore, the MEW meshes endowed the chondral compartment with compressive properties approaching those of native cartilage (20-fold reinforcement versus pristine hydrogel). The osteal and chondral compartment supported osteogenesis and cartilage matrix deposition in vitro, and the neo-synthesized cartilage matrix further contributed to the mechanical reinforcement at the ceramic-hydrogel interface. This multi-material, multi-scale 3D printing approach provides a promising strategy for engineering advanced composite constructs for the regeneration of musculoskeletal and connective tissue interfaces.


Assuntos
Bioimpressão/métodos , Cerâmica/química , Hidrogéis/química , Engenharia Tecidual/métodos , Fenômenos Biomecânicos , Bioimpressão/instrumentação , Cartilagem Articular/citologia , Proliferação de Células , Condrócitos/citologia , Condrogênese , Humanos , Células-Tronco Mesenquimais/citologia , Poliésteres/química , Impressão Tridimensional , Engenharia Tecidual/instrumentação , Alicerces Teciduais/química
15.
Biomacromolecules ; 21(1): 73-88, 2020 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-31500418

RESUMO

Combining multiple stimuli-responsive functionalities into the polymer design is an attractive approach to improve nucleic acid delivery. However, more in-depth fundamental understanding how the multiple functionalities in the polymer structures are influencing polyplex formation and stability is essential for the rational development of such delivery systems. Therefore, in this study the structure and dynamics of thermosensitive polyplexes were investigated by tracking the behavior of labeled plasmid DNA (pDNA) and polymer with time-resolved fluorescence spectroscopy using fluorescence resonance energy transfer (FRET). The successful synthesis of a heterofunctional poly(ethylene glycol) (PEG) macroinitiator containing both an atom transfer radical polymerization (ATRP) and reversible addition-fragmentation chain-transfer (RAFT) initiator is reported. The use of this novel PEG macroinitiator allows for the controlled polymerization of cationic and thermosensitive linear triblock copolymers and labeling of the chain-end with a fluorescent dye by maleimide-thiol chemistry. The polymers consisted of a thermosensitive poly(N-isopropylacrylamide) (PNIPAM, N), hydrophilic PEG (P), and cationic poly(2-(dimethylamino)ethyl methacrylate) (PDMAEMA, D) block, further referred to as NPD. Polymer block D chain-ends were labeled with Cy3, while pDNA was labeled with FITC. The thermosensitive NPD polymers were used to prepare pDNA polyplexes, and the effect of the N/P charge ratio, temperature, and composition of the triblock copolymer on the polyplex properties were investigated, taking nonthermosensitive PD polymers as the control. FRET was observed both at 4 and 37 °C, indicating that the introduction of the thermosensitive PNIPAM block did not compromise the polyplex structure even above the polymer's cloud point. Furthermore, FRET results showed that the NPD- and PD-based polyplexes have a less dense core compared to polyplexes based on cationic homopolymers (such as PEI) as reported before. The polyplexes showed to have a dynamic character meaning that the polymer chains can exchange between the polyplex core and shell. Mobility of the polymers allow their uniform redistribution within the polyplex and this feature has been reported to be favorable in the context of pDNA release and subsequent improved transfection efficiency, compared to nondynamic formulations.


Assuntos
DNA/química , Plasmídeos/genética , Polímeros/síntese química , Resinas Acrílicas/química , Carbocianinas/química , Transferência Ressonante de Energia de Fluorescência , Espectroscopia de Ressonância Magnética , Metacrilatos/química , Nylons/química , Polietilenoglicóis/química , Polimerização , Polímeros/química , Espectrometria de Fluorescência , Espectrofotometria Ultravioleta , Temperatura
16.
Adv Funct Mater ; 30(48): 2000893, 2020 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-34658689

RESUMO

End-stage liver diseases are an increasing health burden, and liver transplantations are currently the only curative treatment option. Due to a lack of donor livers, alternative treatments are urgently needed. Human liver organoids are very promising for regenerative medicine; however, organoids are currently cultured in Matrigel, which is extracted from the extracellular matrix of the Engelbreth-Holm-Swarm mouse sarcoma. Matrigel is poorly defined, suffers from high batch-to-batch variability and is of xenogeneic origin, which limits the clinical application of organoids. Here, a novel hydrogel based on polyisocyanopeptides (PIC) and laminin-111 is described for human liver organoid cultures. PIC is a synthetic polymer that can form a hydrogel with thermosensitive properties, making it easy to handle and very attractive for clinical applications. Organoids in an optimized PIC hydrogel proliferate at rates comparable to those observed with Matrigel; proliferation rates are stiffness-dependent, with lower stiffnesses being optimal for organoid proliferation. Moreover, organoids can be efficiently differentiated toward a hepatocyte-like phenotype with key liver functions. This proliferation and differentiation potential maintain over at least 14 passages. The results indicate that PIC is very promising for human liver organoid culture and has the potential to be used in a variety of clinical applications including cell therapy and tissue engineering.

17.
J Control Release ; 315: 114-125, 2019 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-31672626

RESUMO

Recent studies have shown a high potency of protein-based vaccines for cell-mediated cancer immunotherapy. However, due to their poor cellular uptake, efficient immune responses with soluble protein antigens are often not observed. As a result of superior cellular uptake, nanogels loaded with antigenic peptides were investigated in this study as carrier systems for cancer immunotherapy. Different synthetic long peptides (SLPs) containing the CTL and CD4+ T-helper (Help) epitopes were synthesized and covalently conjugated via disulfide bonds to the polymeric network of cationic dextran nanogels. Cationic nanogels with a size of 210 nm, positive zeta potential (+24 mV) and high peptide loading content (15%) showed triggered release of the loaded peptides under reducing conditions. An in vitro study demonstrated the capability of cationic nanogels to maturate dendritic cells (DCs). Importantly, covalently SLP-loaded nanogels adjuvanted with poly(I:C) showed superior CD8+ T cell responses compared to soluble peptides and nanogel formulations with physically loaded peptides both in vitro and in vivo. In conclusion, covalently SLPs-loaded cationic nanogels are a promising system to provoke immune responses for therapeutic cancer vaccination.


Assuntos
Vacinas Anticâncer/administração & dosagem , Imunoterapia/métodos , Nanogéis , Peptídeos/administração & dosagem , Adjuvantes Imunológicos/administração & dosagem , Animais , Antígenos/imunologia , Linfócitos T CD8-Positivos/imunologia , Vacinas Anticâncer/imunologia , Cátions , Células Dendríticas/imunologia , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Ovalbumina/imunologia , Tamanho da Partícula , Peptídeos/imunologia , Poli I-C/imunologia
18.
Macromol Biosci ; 19(2): e1800412, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30548802

RESUMO

The increasing prevalence of end-stage renal disease and persistent shortage of donor organs call for alternative therapies for kidney patients. Dialysis remains an inferior treatment as clearance of large and protein-bound waste products depends on active tubular secretion. Biofabricated tissues could make a valuable contribution, but kidneys are highly intricate and multifunctional organs. Depending on the therapeutic objective, suitable cell sources and scaffolds must be selected. This study provides a proof-of-concept for stand-alone kidney tubule grafts with suitable mechanical properties for future implantation purposes. Porous tubular nanofiber scaffolds are fabricated by electrospinning 12%, 16%, and 20% poly-ε-caprolactone (PCL) v/w (chloroform and dimethylformamide, 1:3) around 0.7 mm needle templates. The resulting scaffolds consist of 92%, 69%, and 54% nanofibers compared to microfibers, respectively. After biofunctionalization with L-3,4-dihydroxyphenylalanine and collagen IV, 10 × 106 proximal tubule cells per mL are injected and cultured until experimental readout. A human-derived cell model can bridge all fiber-to-fiber distances to form a monolayer, whereas small-sized murine cells form monolayers on dense nanofiber meshes only. Fabricated constructs remain viable for at least 3 weeks and maintain functionality as shown by inhibitor-sensitive transport activity, which suggests clearance capacity for both negatively and positively charged solutes.


Assuntos
Células Epiteliais/citologia , Túbulos Renais Proximais/citologia , Túbulos Renais Proximais/cirurgia , Engenharia Tecidual/métodos , Alicerces Teciduais , Transplantes/crescimento & desenvolvimento , Materiais Biocompatíveis/uso terapêutico , Caproatos/química , Proliferação de Células , Células Cultivadas , Humanos , Falência Renal Crônica/cirurgia , Lactonas/química , Polímeros
19.
Biomacromolecules ; 19(9): 3766-3775, 2018 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-30102855

RESUMO

In this study, native chemical ligation (NCL) was used as a selective cross-linking method to form core-cross-linked thermosensitive polymeric micelles for drug delivery applications. To this end, two complementary ABA triblock copolymers having polyethylene glycol (PEG) as midblock were synthesized by atom transfer radical polymerization (ATRP). The thermosensitive poly isopropylacrylamide (PNIPAM) outer blocks of the polymers were copolymerized with either N-(2-hydroxypropyl)methacrylamide-cysteine (HPMA-Cys), P(NIPAM- co-HPMA-Cys)-PEG-P(NIPAM- co-HPMA-Cys) (PNC) or N-(2-hydroxypropyl)methacrylamide-ethylthioglycolate succinic acid (HPMA-ETSA), P(NIPAM- co-HPMA-ETSA)-PEG-P(NIPAM- co-HPMA-ETSA) (PNE). Mixing of these polymers in aqueous solution followed by heating to 50 °C resulted in the formation of thermosensitive flower-like micelles. Subsequently, native chemical ligation in the core of micelles resulted in stabilization of the micelles with a Z-average of 65 nm at body temperature. Decreasing the temperature to 10 °C only affected the size of the micelles (increased to 90 nm) but hardly affected the polydispersity index (PDI) and aggregation number ( Nagg) confirming covalent stabilization of the micelles by NCL. CryoTEM images showed micelles with an uniform spherical shape and dark patches close to the corona of micelles were observed in the tomographic view. The dark patches represent more dense areas in the micelles which coincide with the higher content of HPMA-Cys/ETSA close to the PEG chain revealed by the polymerization kinetics study. Notably, this cross-linking method provides the possibility for conjugation of functional molecules either by using the thiol moieties still present after NCL or by simply adjusting the molar ratio between the polymers (resulting in excess cysteine or thioester moieties) during micelle formation. Furthermore, in vitro cell experiments demonstrated that fluorescently labeled micelles were successfully taken up by HeLa cells while cell viability remained high even at high micelle concentrations. These results demonstrate the potential of these micelles for drug delivery applications.


Assuntos
Reagentes de Ligações Cruzadas/química , Portadores de Fármacos/síntese química , Micelas , Resinas Acrílicas/química , Células HeLa , Humanos , Metacrilatos/química , Polietilenoglicóis/química , Coroa de Proteína/química , Temperatura , Tioglicolatos/química
20.
Int J Pharm ; 550(1-2): 190-199, 2018 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-30130606

RESUMO

Thermosensitive liposomes grafted with cholesterol-conjugated poly(N-(2-hydroxypropyl) methacrylamide mono/dilactate) (chol-pHPMAlac) have been developed for heat-induced release of doxorubicin (DOX). These liposomes release DOX completely during mild hyperthermia, but their interaction with blood cells and cancer cells has not been studied. Following intravenous administration, liposomes may interact with plasma proteins and various types of cells (e.g., endothelial cells, platelets, and macrophages), which would reduce their disposition in the tumor stroma. Interaction between liposomes and platelets may further cause platelet activation and thrombosis, which could lead to vascular occlusion and thromboembolic complications. The aim was to investigate DOX release kinetics in the presence of serum, stability, in vitro uptake by and toxicity to cancer cells and somatic cells, and platelet activating potential of the chol-pHPMAlac liposomes. DOX release was determined spectrofluorometrically. Liposome stability was determined in buffer and serum by dynamic light scattering and nanoparticle tracking analysis. Association with/uptake by and toxicity of empty liposomes to AML-12, HepG2 (both hepatocyte-derived cancer cells), RAW 264.7 (macrophages), and HUVEC (endothelial) cells was assayed in vitro. Platelet activation was determined by analysis of P-selectin expression and fibrinogen binding. DOPE:EPC liposomes (diameter = 135 nm) grafted with 5% chol-pHPMAlac (cloud point (CP) = 16 °C; Mn = 8.5 kDa) released less than 10% DOX at 37 °C in 30 min, whereas complete release took place at 47 °C or higher within 10 min. The size of these liposomes remained stable in buffer and serum during 24 h at 37 °C. Fluorescently labeled but DOX-lacking chol-pHPMAlac-liposomes exhibited poor association with/uptake by all cells under investigation, were not cytotoxic, and did not activate platelets in both buffered solution and whole blood. In conclusion, thermosensitive chol-pHPMAlac-grafted liposomes rapidly release DOX during mild hyperthermia. The liposomes are stable in a physiological milieu, are not taken up by cells that are encountered in an in vivo setting, and are non-antagonistic towards platelets. Chol-pHPMAlac-grafted liposomes are therefore good candidates for DOX delivery to tumors and temperature-triggered release in tumor stroma.


Assuntos
Acrilamidas , Antineoplásicos/administração & dosagem , Doxorrubicina/administração & dosagem , Portadores de Fármacos , Hipertermia Induzida , Lactatos , Lipossomos , Animais , Linhagem Celular Tumoral , Avaliação Pré-Clínica de Medicamentos , Humanos , Hipertermia Induzida/métodos , Lipossomos/química , Camundongos , Neoplasias/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA