Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Neuro Oncol ; 26(7): 1181-1194, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38466087

RESUMO

Brain tumor diagnostics have significantly evolved with the use of positron emission tomography (PET) and advanced magnetic resonance imaging (MRI) techniques. In addition to anatomical MRI, these modalities may provide valuable information for several clinical applications such as differential diagnosis, delineation of tumor extent, prognostication, differentiation between tumor relapse and treatment-related changes, and the evaluation of response to anticancer therapy. In particular, joint recommendations of the Response Assessment in Neuro-Oncology (RANO) Group, the European Association of Neuro-oncology, and major European and American Nuclear Medicine societies highlighted that the additional clinical value of radiolabeled amino acids compared to anatomical MRI alone is outstanding and that its widespread clinical use should be supported. For advanced MRI and its steadily increasing use in clinical practice, the Standardization Subcommittee of the Jumpstarting Brain Tumor Drug Development Coalition provided more recently an updated acquisition protocol for the widely used dynamic susceptibility contrast perfusion MRI. Besides amino acid PET and perfusion MRI, other PET tracers and advanced MRI techniques (e.g. MR spectroscopy) are of considerable clinical interest and are increasingly integrated into everyday clinical practice. Nevertheless, these modalities have shortcomings which should be considered in clinical routine. This comprehensive review provides an overview of potential challenges, limitations, and pitfalls associated with PET imaging and advanced MRI techniques in patients with gliomas or brain metastases. Despite these issues, PET imaging and advanced MRI techniques continue to play an indispensable role in brain tumor management. Acknowledging and mitigating these challenges through interdisciplinary collaboration, standardized protocols, and continuous innovation will further enhance the utility of these modalities in guiding optimal patient care.


Assuntos
Neoplasias Encefálicas , Imageamento por Ressonância Magnética , Tomografia por Emissão de Pósitrons , Humanos , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/patologia , Tomografia por Emissão de Pósitrons/métodos , Imageamento por Ressonância Magnética/métodos
2.
J Nucl Med ; 64(7): 1087-1092, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37116915

RESUMO

Conventional MRI has important limitations when assessing for progression of disease (POD) versus treatment-related changes (TRC) in patients with malignant brain tumors. We describe the observed impact and pitfalls of implementing 18F-fluoroethyltyrosine (18F-FET) perfusion PET/MRI into routine clinical practice. Methods: Through expanded-access investigational new drug use of 18F-FET, hybrid 18F-FET perfusion PET/MRI was performed during clinical management of 80 patients with World Health Organization central nervous system grade 3 or 4 gliomas or brain metastases of 6 tissue origins for which the prior brain MRI results were ambiguous. The diagnostic performance with 18F-FET PET/MRI was dually evaluated within routine clinical service and for retrospective parametric evaluation. Various 18F-FET perfusion PET/MRI parameters were assessed, and patients were monitored for at least 6 mo to confirm the diagnosis using pathology, imaging, and clinical progress. Results: Hybrid 18F-FET perfusion PET/MRI had high overall accuracy (86%), sensitivity (86%), and specificity (87%) for difficult diagnostic cases for which conventional MRI accuracy was poor (66%). 18F-FET tumor-to-brain ratio static metrics were highly reliable for distinguishing POD from TRC (area under the curve, 0.90). Dynamic tumor-to-brain intercept was more accurate (85%) than SUV slope (73%) or time to peak (73%). Concordant PET/MRI findings were 89% accurate. When PET and MRI conflicted, 18F-FET PET was correct in 12 of 15 cases (80%), whereas MRI was correct in 3 of 15 cases (20%). Clinical management changed after 88% (36/41) of POD diagnoses, whereas management was maintained after 87% (34/39) of TRC diagnoses. Conclusion: Hybrid 18F-FET PET/MRI positively impacted the routine clinical care of challenging malignant brain tumor cases at a U.S. institution. The results add to a growing body of literature that 18F-FET PET complements MRI, even rescuing MRI when it fails.


Assuntos
Neoplasias Encefálicas , Humanos , Estudos Retrospectivos , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/terapia , Progressão da Doença , Imageamento por Ressonância Magnética/métodos , Perfusão , Tomografia por Emissão de Pósitrons/métodos , Tirosina
3.
Front Oncol ; 12: 939260, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36483050

RESUMO

Many drugs that show potential in animal models of glioblastoma (GBM) fail to translate to the clinic, contributing to a paucity of new therapeutic options. In addition, animal model development often includes histologic assessment, but multiparametric/multimodality imaging is rarely included despite increasing utilization in patient cancer management. This study developed an intracranial recurrent, drug-resistant, human-derived glioblastoma tumor in Sprague-Dawley Rag2-Rag2 tm1Hera knockout rat and was characterized both histologically and using multiparametric/multimodality neuroimaging. Hybrid 18F-fluoroethyltyrosine positron emission tomography and magnetic resonance imaging, including chemical exchange saturation transfer (18F-FET PET/CEST MRI), was performed for full tumor viability determination and characterization. Histological analysis demonstrated human-like GBM features of the intracranially implanted tumor, with rapid tumor cell proliferation (Ki67 positivity: 30.5 ± 7.8%) and neovascular heterogeneity (von Willebrand factor VIII:1.8 to 5.0% positivity). Early serial MRI followed by simultaneous 18F-FET PET/CEST MRI demonstrated consistent, predictable tumor growth, with exponential tumor growth most evident between days 35 and 49 post-implantation. In a second, larger cohort of rats, 18F-FET PET/CEST MRI was performed in mature tumors (day 49 post-implantation) for biomarker determination, followed by evaluation of single and combination therapy as part of the model development and validation. The mean percentage of the injected dose per mL of 18F-FET PET correlated with the mean %CEST (r = 0.67, P < 0.05), but there was also a qualitative difference in hot spot location within the tumor, indicating complementary information regarding the tumor cell demand for amino acids and tumor intracellular mobile phase protein levels. Finally, the use of this glioblastoma animal model for therapy assessment was validated by its increased overall survival after treatment with combination therapy (temozolomide and idasanutlin) (P < 0.001). Our findings hold promise for a more accurate tumor viability determination and novel therapy assessment in vivo in a recently developed, reproducible, intracranial, PDX GBM.

4.
Ther Deliv ; 13(4): 249-273, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35615860

RESUMO

Glioblastoma (GBM) is a deadly malignancy with a poor prognosis. An important factor contributing to GBM recurrence is high resistance of GBM cancer stem cells (GSCs). While temozolomide (TMZ), has been shown to consistently extend survival, GSCs grow resistant to TMZ through upregulation of DNA damage repair mechanisms and avoidance of apoptosis. Since a single-drug approach has failed to significantly alter prognosis in the past 15 years, unique approaches such as multidrug combination therapy together with distinctive targeted drug-delivery approaches against cancer stem cells are needed. In this review, a rationale for multidrug therapy using a targeted nanotechnology approach that preferentially target GSCs is proposed with discussion and examples of drugs, nanomedicine delivery systems, and targeting moieties.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos , Quimioterapia Combinada , Glioblastoma/tratamento farmacológico , Humanos , Hansenostáticos/farmacologia , Hansenostáticos/uso terapêutico , Células-Tronco Neoplásicas/patologia , Temozolomida/farmacologia , Temozolomida/uso terapêutico
5.
Proc Natl Acad Sci U S A ; 118(45)2021 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-34740973

RESUMO

Tumor antigen heterogeneity, a severely immunosuppressive tumor microenvironment (TME) and lymphopenia resulting in inadequate immune intratumoral trafficking, have rendered glioblastoma (GBM) highly resistant to therapy. To address these obstacles, here we describe a unique, sophisticated combinatorial platform for GBM: a cooperative multifunctional immunotherapy based on genetically engineered human natural killer (NK) cells bearing multiple antitumor functions including local tumor responsiveness that addresses key drivers of GBM resistance to therapy: antigen escape, immunometabolic reprogramming of immune responses, and poor immune cell homing. We engineered dual-specific chimeric antigen receptor (CAR) NK cells to bear a third functional moiety that is activated in the GBM TME and addresses immunometabolic suppression of NK cell function: a tumor-specific, locally released antibody fragment which can inhibit the activity of CD73 independently of CAR signaling and decrease the local concentration of adenosine. The multifunctional human NK cells targeted patient-derived GBM xenografts, demonstrated local tumor site-specific activity in the tissue, and potently suppressed adenosine production. We also unveil a complex reorganization of the immunological profile of GBM induced by inhibiting autophagy. Pharmacologic impairment of the autophagic process not only sensitized GBM to antigenic targeting by NK cells but promoted a chemotactic profile favorable to NK infiltration. Taken together, our study demonstrates a promising NK cell-based combinatorial strategy that can target multiple clinically recognized mechanisms of GBM progression simultaneously.


Assuntos
Engenharia Genética , Glioblastoma/terapia , Imunoterapia Adotiva , Células Matadoras Naturais , Microambiente Tumoral/imunologia , Animais , Autofagia , Glioblastoma/imunologia , Humanos , Camundongos , Ensaios Antitumorais Modelo de Xenoenxerto
6.
Pharm Res ; 38(6): 1067-1079, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34100216

RESUMO

PURPOSE: Glioblastoma (GBM) is a malignant brain tumor with a poor long-term prognosis due to recurrence from highly resistant GBM cancer stem cells (CSCs), for which the current standard of treatment with temozolomide (TMZ) alone will unlikely produce a viable cure. In addition, CSCs regenerate rapidly and overexpress methyl transferase which overrides the DNA-alkylating mechanism of TMZ, leading to resistance. The objective of this research was to apply the concepts of nanotechnology to develop a multi-drug therapy, TMZ and idasanutlin (RG7388, a potent mouse double minute 2 (MDM2) antagonist), loaded in functionalized nanoparticles (NPs) that target the GBM CSC subpopulation, reduce the cell viability and provide possibility of in vivo preclinical imaging. METHODS: Polymer-micellar NPs composed of poly(styrene-b-ethylene oxide) (PS-b-PEO) and poly(lactic-co-glycolic) acid (PLGA) were developed by a double emulsion technique loading TMZ and/or RG7388. The NPs were covalently bound to a 15-nucleotide base-pair CD133 aptamer to target the CD133 antigen expressed on the surfaces of GBM CSCs. For diagnostic functionality, the NPs were labelled with radiotracer Zirconium-89 (89Zr). RESULTS: NPs maintained size range less than 100 nm, a low negative charge and exhibited the ability to target and kill the CSC subpopulation when TMZ and RG7388 were used in combination. The targeting function of CD133 aptamer promoted killing in GBM CSCs providing impetus for further development of targeted nanosystems for localized therapy in future in vivo models. CONCLUSIONS: This work has provided a potential clinical application for targeting GBM CSCs with simultaneous diagnostic imaging.


Assuntos
Antígeno AC133/metabolismo , Neoplasias Encefálicas/metabolismo , Sistemas de Liberação de Medicamentos/métodos , Glioblastoma/metabolismo , Nanopartículas/metabolismo , Células-Tronco Neoplásicas/metabolismo , Animais , Neoplasias Encefálicas/tratamento farmacológico , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Desenvolvimento de Medicamentos/métodos , Avaliação Pré-Clínica de Medicamentos/métodos , Glioblastoma/tratamento farmacológico , Humanos , Camundongos , Micelas , Nanopartículas/administração & dosagem , Células-Tronco Neoplásicas/efeitos dos fármacos , Polímeros/administração & dosagem , Polímeros/metabolismo , Proteínas Proto-Oncogênicas c-mdm2/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Pirrolidinas/administração & dosagem , Pirrolidinas/metabolismo , Temozolomida/administração & dosagem , Temozolomida/metabolismo , para-Aminobenzoatos/administração & dosagem , para-Aminobenzoatos/metabolismo
7.
Curr Oncol Rep ; 23(3): 34, 2021 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-33599882

RESUMO

PURPOSE OF REVIEW: This review will explore the latest in advanced imaging techniques, with a focus on the complementary nature of multiparametric, multimodality imaging using magnetic resonance imaging (MRI) and positron emission tomography (PET). RECENT FINDINGS: Advanced MRI techniques including perfusion-weighted imaging (PWI), MR spectroscopy (MRS), diffusion-weighted imaging (DWI), and MR chemical exchange saturation transfer (CEST) offer significant advantages over conventional MR imaging when evaluating tumor extent, predicting grade, and assessing treatment response. PET performed in addition to advanced MRI provides complementary information regarding tumor metabolic properties, particularly when performed simultaneously. 18F-fluoroethyltyrosine (FET) PET improves the specificity of tumor diagnosis and evaluation of post-treatment changes. Incorporation of radiogenomics and machine learning methods further improve advanced imaging. The complementary nature of combining advanced imaging techniques across modalities for brain tumor imaging and incorporating technologies such as radiogenomics has the potential to reshape the landscape in neuro-oncology.


Assuntos
Neoplasias Encefálicas/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Tomografia por Emissão de Pósitrons/métodos , Neoplasias Encefálicas/patologia , Imagem de Difusão por Ressonância Magnética , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA