Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
1.
Pediatr Blood Cancer ; 71(7): e31029, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38679845

RESUMO

BACKGROUND: Previous studies have shown that neutrophil-to-lymphocyte (NLR) ratio at diagnosis and early lymphocytes recovery on doxorubicin-based chemotherapy, may impact the outcome in patients with osteosarcoma (OST). This study aimed to evaluate the prognostic value of hemogram parameters in patients with OST treated with high-dose methotrexate and etoposide/ifosfamide (M-EI) chemotherapy. MATERIALS AND METHODS: We retrospectively analyzed the prognostic value of various hemogram parameters at diagnosis and during therapy in a large consecutive cohort of patients with OST included in the French OS2006 trial and treated with M-EI chemotherapy. RESULTS: A total of 164 patients were analyzed. The median age was 14.7 years (interquartile range [IQR]: 11.7-17). Median follow-up was 5.6 years (IQR: 3.3-7.7 years). Three-year event-free survival (EFS) and overall survival (OS) were 71.5% (95% confidence interval [CI]: 64%-78%) and 86.4% (95% CI: 80%-91%), respectively. In univariate analysis, blood count parameters at diagnosis and early lymphocyte recovery at Day 14 were not found prognostic of survival outcomes. By contrast, an increase of NLR ratio at Day 1 of the first EI chemotherapy (NLR-W4) was associated with reduced OS in univariate (p = .0044) and multivariate analysis (hazards ratio [HR] = 1.3, 95% CI: 1.1-1.5; p = .002), although not with EFS. After adjustment on histological response and metastatic status, an increase of the ratio NLR-W4 of 1 was associated with an increased risk of death of 30%. CONCLUSIONS: We identified NLR-W4 as a potential early biomarker for survival in patients with OST treated with M-EI chemotherapy. Further studies are required to confirm the prognostic value of NLR and better identify immune mechanisms involved in disease surveillance.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica , Neoplasias Ósseas , Etoposídeo , Metotrexato , Osteossarcoma , Humanos , Osteossarcoma/tratamento farmacológico , Osteossarcoma/mortalidade , Osteossarcoma/patologia , Osteossarcoma/sangue , Feminino , Masculino , Adolescente , Estudos Retrospectivos , Criança , Prognóstico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Neoplasias Ósseas/tratamento farmacológico , Neoplasias Ósseas/mortalidade , Neoplasias Ósseas/patologia , Neoplasias Ósseas/sangue , Etoposídeo/administração & dosagem , Etoposídeo/uso terapêutico , Metotrexato/administração & dosagem , Metotrexato/uso terapêutico , Taxa de Sobrevida , Neutrófilos/patologia , Seguimentos , Linfócitos/patologia , Ifosfamida/administração & dosagem , França/epidemiologia
2.
Epigenomics ; 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38587919

RESUMO

Precise spatiotemporal regulations of gene expression are essential for determining cells' fates and functions. Enhancers are cis-acting DNA elements that act as periodic transcriptional thrusters and their activities are cell type specific. Clusters of enhancers, called super-enhancers, are more densely occupied by transcriptional activators than enhancers, driving stronger expression of their target genes, which have prominent roles in establishing and maintaining cellular identities. Here we review the current knowledge on the composition and structure of super-enhancers to understand how they robustly stimulate the expression of cellular identity genes. We also review their involvement in the development of various cell types and both noncancerous and cancerous disorders, implying the therapeutic interest of targeting them to fight against various diseases.

3.
Biochem Pharmacol ; 216: 115774, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37678626

RESUMO

Ion channels are transmembrane structures that allow the passage of ions across cell membranes such as the plasma membrane or the membranes of various organelles like the nucleus, endoplasmic reticulum, Golgi apparatus or mitochondria. Aberrant expression of various ion channels has been demonstrated in several tumor cells, leading to the promotion of key functions in tumor development, such as cell proliferation, resistance to apoptosis, angiogenesis, invasion and metastasis. The link between ion channels and these key biological functions that promote tumor development has led to the classification of cancers as oncochannelopathies. Among all ion channels, the most varied and numerous, forming the largest family, are the potassium channels, with over 70 genes encoding them in humans. In this context, this review will provide a non-exhaustive overview of the role of plasma membrane potassium channels in cancer, describing 1) the nomenclature and structure of potassium channels, 2) the role of these channels in the control of biological functions that promotes tumor development such as proliferation, migration and cell death, and 3) the role of two particular classes of potassium channels, the SKCa- and Kv1- type potassium channels in cancer progression.


Assuntos
Neoplasias , Superfamília Shaker de Canais de Potássio , Humanos , Neoplasias/patologia , Apoptose , Canais Iônicos , Canais de Potássio
4.
Front Cell Dev Biol ; 11: 1248753, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37752913

RESUMO

In Europe, with an incidence of 7.5 cases per million, Ewing sarcoma (ES) is the second most common primary malignant bone tumor in children, adolescents and young adults, after osteosarcoma. Since the 1980s, conventional treatment has been based on the use of neoadjuvant and adjuvant chemotherapeutic agents combined with surgical resection of the tumor when possible. These treatments have increased the patient survival rate to 70% for localized forms, which drops drastically to less than 30% when patients are resistant to chemotherapy or when pulmonary metastases are present at diagnosis. However, the lack of improvement in these survival rates over the last decades points to the urgent need for new therapies. Genetically, ES is characterized by a chromosomal translocation between a member of the FET family and a member of the ETS family. In 85% of cases, the chromosomal translocation found is (11; 22) (q24; q12), between the EWS RNA-binding protein and the FLI1 transcription factor, leading to the EWS-FLI1 fusion protein. This chimeric protein acts as an oncogenic factor playing a crucial role in the development of ES. This review provides a non-exhaustive overview of ES from a clinical and biological point of view, describing its main clinical, cellular and molecular aspects.

5.
Cancers (Basel) ; 14(23)2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36497429

RESUMO

TP53 (TP53), p73 (TP73), and p63 (TP63) are members of the p53 transcription factor family, which has many activities spanning from embryonic development through to tumor suppression. The utilization of two promoters and alternative mRNA splicing has been shown to yield numerous isoforms in p53, p63, and p73. TAp73 is thought to mediate apoptosis as a result of nuclear accumulation following chemotherapy-induced DNA damage, according to a number of studies. Overexpression of the nuclear ΔNp63 and ΔNp73 isoforms, on the other hand, suppresses TAp73's pro-apoptotic activity in human malignancies, potentially leading to metastatic spread or inhibition. Another well-known pathway that has been associated to metastatic spread is the TGF pathway. TGFs are a family of structurally related polypeptide growth factors that regulate a variety of cellular functions including cell proliferation, lineage determination, differentiation, motility, adhesion, and cell death, making them significant players in development, homeostasis, and wound repair. Various studies have already identified several interactions between the p53 protein family and the TGFb pathway in the context of tumor growth and metastatic spread, beginning to shed light on this enigmatic intricacy.

6.
Cancers (Basel) ; 14(22)2022 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-36428719

RESUMO

Despite advances in clinical management, osteosarcoma and Ewing sarcoma, the two most frequent malignant primary bone tumors at pediatric age, still have a poor prognosis for high-risk patients (i.e., relapsed or metastatic disease). Triggering a TRAIL pro-apoptotic pathway represents a promising therapeutic approach, but previous studies have described resistance mechanisms that could explain the declining interest of such an approach in clinical trials. In this study, eight relevant human cell lines were used to represent the heterogeneity of the response to the TRAIL pro-apoptotic effect in pediatric bone tumors and two cell-derived xenograft models were developed, originating from a sensitive and a resistant cell line. The DR5 agonist antibody AMG655 (Conatumumab) was selected as an example of TRAIL-based therapy. In both TRAIL-sensitive and TRAIL-resistant cell lines, two signaling pathways were activated following AMG655 treatment, the canonical extrinsic apoptotic pathway and a non-apoptotic pathway, involving the recruitment of RIPK1 on the DR5 protein complex, activating both pro-survival and pro-proliferative effectors. However, the resulting balance of these two pathways was different, leading to apoptosis only in sensitive cells. In vivo, AMG655 treatment reduced tumor development of the sensitive model but accelerated tumor growth of the resistant one. We proposed two independent strategies to overcome this issue: (1) a proof-of-concept targeting of RIPK1 by shRNA approach and (2) the use of a novel highly-potent TRAIL-receptor agonist; both shifting the balance in favor of apoptosis. These observations are paving the way to resurrect TRAIL-based therapies in pediatric bone tumors to help predict the response to treatment, and propose a relevant adjuvant strategy for future therapeutic development.

7.
Cancers (Basel) ; 14(14)2022 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-35884563

RESUMO

Osteosarcoma (OS) is the most frequent primary bone tumor, mainly affecting children and young adults. Despite therapeutic advances, the 5-year survival rate is 70% but drastically decreases to 20-30% for poor responders to therapies or for patients with metastasis. No real evolution of the survival rates has been observed for four decades, explained by poor knowledge of the origin, difficulties related to diagnosis and the lack of targeted therapies for this pediatric tumor. This review will describe a non-exhaustive overview of osteosarcoma disease from a clinical and biological point of view, describing the origin, diagnosis and therapies.

8.
Am J Cancer Res ; 12(4): 1843-1854, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35530297

RESUMO

Predicting a response of osteosarcoma patients to chemotherapy, such as doxorubicin or high-dose methotrexate cocktail, remains a challenge in the clinic. Moreover, the prognostic value of currently used necrosis analysis is debatable. New markers of the therapeutic response or the prognostic response are urgently needed. The microenvironment plays a key role in the vascularization of highly heterogeneous tumors. Using the syngeneic MOS-J mouse model of osteosarcoma, we focused our study on the immunohistochemistry of tumor vascularization in order to identify new vessel markers, and to search for potential markers of the therapeutic response. Endomucin+, CD31+, and α-SMA+-positive elements were quantified in control (n=6) and doxorubicin-treated (n=6) mice in three different intra-tumor locations. We also used co-labeling to assess CD31+/Endomucin+ and CD31+/α-SMA+ co-expression. We identified a central tumor zone with a low vascularization profile for all of these markers. We identified two distinct types of vessels: CD31+/Endomucin+ vessels with a sprouting, neo-angiogenic, interlaced appearance, and CD31+/α-SMA+ vessel with a well-defined, mature structure. Doxorubicin appeared to reduce CD31+ expression in the tumor invasion front. In the doxorubicin-sensitive model, there were four times more CD31+/α-SMA+ elements than in the poorly responsive model. Therefore, we propose a methodology based on immunohistochemistry and multiplexed immunofluorescence to use endomucin as a promising new vascular marker in the osteosarcoma model. Moreover, our results suggest that CD31+/α-SMA+ vessels could be considered to be indicators of vasculature normalization and they may be used as specific markers of a good therapeutic response.

9.
Cells ; 10(12)2021 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-34944050

RESUMO

Tumorigenesis is a long-term and multistage process that often leads to the formation of metastases. During this pathological course, two major events appear to be crucial: primary tumour growth and metastatic expansion. In this context, despite research and clinical advances during the past decades, bone cancers remain a leading cause of death worldwide among paediatric cancer patients. Osteosarcomas are the most common malignant bone tumours in children and adolescents. Notwithstanding advances in therapeutic treatments, many patients succumb to these diseases. In particular, less than 30% of patients who demonstrate metastases at diagnosis or are poor responders to chemotherapy survive 5 years after initial diagnosis. LIM kinases (LIMKs), comprising LIMK1 and LIMK2, are common downstream effectors of several signalization pathways, and function as a signalling node that controls cytoskeleton dynamics through the phosphorylation of the cofilin family proteins. In recent decades, several reports have indicated that the functions of LIMKs are mainly implicated in the regulation of actin microfilament and the control of microtubule dynamics. Previous studies have thus identified LIMKs as cancer-promoting regulators in multiple organ cancers, such as breast cancer or prostate cancer. This review updates the current understanding of LIMK involvement in osteosarcoma progression.


Assuntos
Quinases Lim/metabolismo , Osteossarcoma/enzimologia , Osteossarcoma/patologia , Animais , Neoplasias Ósseas/enzimologia , Remodelação Óssea , Humanos , Modelos Biológicos , Osteogênese
10.
Front Oncol ; 11: 765711, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34765560

RESUMO

BACKGROUND: The poor survival rate of patients with osteosarcoma (OS), specifically with metastases at diagnosis, undergoes the urgency to develop new therapeutic strategies. Although we recently demonstrated the key role of YAP/TEAD signaling in the growth of OS primary tumor, the molecular mechanisms by which YAP regulates metastases development remain poorly understood. METHODS: The molecular mechanisms by which YAP regulates metastases development were studied using an overexpression of mutated forms of YAP able or not able to interact with TEAD. Molecular signatures were identified using RNA-sequencing analysis and gene set enrichment. Interactions between YAP and Smad3 were studied using proximity ligation assay (PLA), immunoprecipitation, and promoter/specific gene assays. The involvement of the TGF-ß pathway in the ability of YAP to stimulate metastatic development in vivo was studied using an inhibitor of the TGF-ß cascade in a preclinical model of OS and in vitro on the ability of OS cells to migrate and invade. RESULTS: Our work shows that a high YAP expression is associated with the presence of lung metastases which predicts a poor prognosis. Molecular analysis indicates that TGF-ß signaling is involved in YAP-driven osteosarcoma cell pro-migratory phenotype, epithelial mesenchymal transition, cell migration, and in vivo lung metastasis development. Regardless of its ability to bind to TEAD, YAP interacts with Smad3 and stimulates the transcriptional activity of TGF-ß/Smad3, thereby enhancing the ability of TGF-ß to stimulate lung metastasis development. CONCLUSIONS: We demonstrated the crucial involvement of the TGF-ß/Smad3 signaling pathway in YAP-driven lung metastasis development in OS.

11.
Biochem Pharmacol ; 194: 114797, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34678225

RESUMO

In children and young adults, primary malignant bone tumours are mainly composed of osteosarcoma and Ewing's sarcoma. Despite advances in treatments, nearly 40% of patients succumb to these diseases. In particular, the clinical outcome of metastatic osteosarcoma or Ewing's sarcoma remains poor, with less than 30% of patients who develop metastases surviving five years after initial diagnosis. Over the last decade, the cancer research community has shown considerable interest in the processes of protein ubiquitination and deubiquitination. In particular, a growing number of studies show the relevance to target the ubiquitin-specific protease (USP) family in various cancers. This review provides an update on the current knowledge regarding the implication of these USPs in the progression of bone sarcoma: osteosarcoma and Ewing's sarcoma.


Assuntos
Neoplasias Ósseas/tratamento farmacológico , Neoplasias Ósseas/enzimologia , Sistemas de Liberação de Medicamentos/métodos , Osteossarcoma/tratamento farmacológico , Osteossarcoma/enzimologia , Proteases Específicas de Ubiquitina/metabolismo , Antineoplásicos/administração & dosagem , Criança , Sistemas de Liberação de Medicamentos/tendências , Humanos , Fator de Crescimento Transformador beta/antagonistas & inibidores , Fator de Crescimento Transformador beta/metabolismo , Proteases Específicas de Ubiquitina/antagonistas & inibidores , Ubiquitinação/efeitos dos fármacos , Ubiquitinação/fisiologia
12.
Cells ; 10(9)2021 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-34571917

RESUMO

Osteosarcoma (OS) is the most common malignant bone tumor in children and teenagers. In many cases, such as poor response to treatment or the presence of metastases at diagnosis, the survival rate of patients remains very low. Although in the literature, more and more studies are emerging on the role of Ubiquitin-Specific Proteases (USPs) in the development of many cancers, few data exist regarding OS. In this context, RNA-sequencing analysis of OS cells and mesenchymal stem cells differentiated or not differentiated into osteoblasts reveals increased expression of four USPs in OS tumor cells: USP6, USP27x, USP41 and USP43. Tissue microarray analysis of patient biopsies demonstrates the nucleic and/or cytoplasmic expression of these four USPs at the protein level. Interestingly, Kaplan-Meyer analysis shows that the expression of two USPs, USP6 and USP41, is correlated with patient survival. In vivo experiments using a preclinical OS model, finally demonstrate that PR619, a USP inhibitor able to enhance protein ubiquitination in OS cell lines, reduces primary OS tumor growth and the development of lung metastases. In this context, in vitro experiments show that PR619 decreases the viability of OS cells, mainly by inducing a caspase3/7-dependent cell apoptosis. Overall, these results demonstrate the relevance of targeting USPs in OS.


Assuntos
Neoplasias Ósseas/tratamento farmacológico , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Neoplasias Pulmonares/tratamento farmacológico , Osteossarcoma/tratamento farmacológico , Inibidores de Proteases/farmacologia , Proteases Específicas de Ubiquitina/antagonistas & inibidores , Animais , Apoptose , Neoplasias Ósseas/enzimologia , Neoplasias Ósseas/patologia , Movimento Celular , Proliferação de Células , Feminino , Humanos , Neoplasias Pulmonares/enzimologia , Neoplasias Pulmonares/secundário , Camundongos , Osteossarcoma/enzimologia , Osteossarcoma/patologia , Prognóstico , Células Tumorais Cultivadas , Ubiquitina Tiolesterase/antagonistas & inibidores , Ubiquitina Tiolesterase/metabolismo , Proteases Específicas de Ubiquitina/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
13.
Pharmaceuticals (Basel) ; 14(5)2021 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-34062831

RESUMO

High-grade osteosarcomas are the most frequent malignant bone tumors in the pediatric population, with 150 patients diagnosed every year in France. Osteosarcomas are associated with low survival rates for high risk patients (metastatic and relapsed diseases). Knowing that the canonical Wnt signaling pathway (Wnt/ß-catenin) plays a complex but a key role in primary and metastatic development of osteosarcoma, the aim of this work was to analyze the effects of ICG-001, a CBP/ß-catenin inhibitor blocking the ß-catenin dependent gene transcription, in three human osteosarcoma cell lines (KHOS, MG63 and 143B). The cell proliferation and migration were first evaluated in vitro after ICG-001 treatment. Secondly, a mouse model of osteosarcoma was used to establish the in vivo biological effect of ICG-001 on osteosarcoma growth and metastatic dissemination. In vitro, ICG-001 treatment strongly inhibits osteosarcoma cell proliferation through a cell cycle blockade in the G0/G1 phase, but surprisingly, increases cell migration of the three cell lines. Moreover, ICG-001 does not modulate tumor growth in the osteosarcoma mouse model but, rather significantly increases the metastatic dissemination to lungs. Taken together, these results highlight, despite an anti-proliferative effect, a deleterious pro-migratory role of ICG-001 in osteosarcoma.

14.
Cells ; 10(4)2021 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-33808130

RESUMO

Osteosarcoma (OS) is the most common form of primary bone tumor affecting mainly children and young adults. Despite therapeutic progress, the 5-year survival rate is 70%, but it drops drastically to 30% for poor responders to therapies or for patients with metastases. Identifying new therapeutic targets is thus essential. Heat Shock Proteins (HSPs) are the main effectors of Heat Shock Response (HSR), the expression of which is induced by stressors. HSPs are a large family of proteins involved in the folding and maturation of other proteins in order to maintain proteostasis. HSP overexpression is observed in many cancers, including breast, prostate, colorectal, lung, and ovarian, as well as OS. In this article we reviewed the significant role played by HSPs in molecular mechanisms leading to OS development and progression. HSPs are directly involved in OS cell proliferation, apoptosis inhibition, migration, and drug resistance. We focused on HSP27, HSP60, HSP70 and HSP90 and summarized their potential clinical uses in OS as either biomarkers for diagnosis or therapeutic targets. Finally, based on different types of cancer, we consider the advantage of targeting heat shock factor 1 (HSF1), the major transcriptional regulator of HSPs in OS.


Assuntos
Neoplasias Ósseas/diagnóstico , Neoplasias Ósseas/terapia , Chaperonas Moleculares/metabolismo , Osteossarcoma/diagnóstico , Osteossarcoma/terapia , Animais , Neoplasias Ósseas/metabolismo , Carcinogênese/metabolismo , Carcinogênese/patologia , Proteínas de Choque Térmico/química , Proteínas de Choque Térmico/metabolismo , Humanos , Modelos Biológicos , Osteossarcoma/metabolismo
15.
Cancers (Basel) ; 12(11)2020 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-33228057

RESUMO

Osteosarcoma (OS) and Ewing's sarcoma (ES) are the most common malignant bone tumors in children and adolescents. In many cases, the prognosis remains very poor. The Sonic hedgehog (SHH) signaling pathway, strongly involved in the development of many cancers, regulate transcription via the transcriptional factors Gli1-3. In this context, RNAseq analysis of OS and ES cell lines reveals an increase of some major compounds of the SHH signaling cascade in ES cells, such as the transcriptional factor Gli1. This increase leads to an augmentation of the transcriptional response of Gli1 in ES cell lines, demonstrating a dysregulation of Gli1 signaling in ES cells and thus the rationale for targeting Gli1 in ES. The use of a preclinical model of ES demonstrates that GANT61, an inhibitor of the transcriptional factor Gli1, reduces ES primary tumor growth. In vitro experiments show that GANT61 decreases the viability of ES cell, mainly through its ability to induce caspase-3/7-dependent cell apoptosis. Taken together, these results demonstrates that GANT61 may be a promising therapeutic strategy for inhibiting the progression of primary ES tumors.

16.
Biomolecules ; 10(9)2020 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-32859065

RESUMO

Despite research and clinical advances during recent decades, bone cancers remain a leading cause of death worldwide. There is a low survival rate for patients with primary bone tumors such as osteosarcoma and Ewing's sarcoma or secondary bone tumors such as bone metastases from prostate carcinoma. Gap junctions are specialized plasma membrane structures consisting of transmembrane channels that directly link the cytoplasm of adjacent cells, thereby enabling the direct exchange of small signaling molecules between cells. Discoveries of human genetic disorders due to genetic mutations in gap junction proteins (connexins) and experimental data using connexin knockout mice have provided significant evidence that gap-junctional intercellular communication (Gj) is crucial for tissue function. Thus, the dysfunction of Gj may be responsible for the development of some diseases. Gj is thus a main mechanism for tumor cells to communicate with other tumor cells and their surrounding microenvironment to survive and proliferate. If it is well accepted that a low level of connexin expression favors cancer cell proliferation and therefore primary tumor development, more evidence is suggesting that a high level of connexin expression stimulates various cellular process such as intravasation, extravasation, or migration of metastatic cells. If so, connexin expression would facilitate secondary tumor dissemination. This paper discusses evidence that suggests that connexin 43 plays an antagonistic role in the development of primary bone tumors as a tumor suppressor and secondary bone tumors as a tumor promoter.


Assuntos
Neoplasias Ósseas/metabolismo , Conexina 43/metabolismo , Animais , Neoplasias Ósseas/genética , Neoplasias Ósseas/patologia , Remodelação Óssea , Comunicação Celular , Movimento Celular/genética , Proliferação de Células , Conexina 43/química , Conexina 43/deficiência , Conexina 43/genética , Transição Epitelial-Mesenquimal/genética , Feminino , Junções Comunicantes/química , Junções Comunicantes/genética , Junções Comunicantes/metabolismo , Expressão Gênica , Humanos , Masculino , Camundongos , Camundongos Knockout , Modelos Biológicos , Metástase Neoplásica/genética , Metástase Neoplásica/patologia , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia
17.
Cells ; 9(4)2020 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-32326444

RESUMO

Osteosarcomas are the most frequent primary bone sarcomas, affecting mainly children, adolescents, and young adults, and with a second peak of incidence in elderly individuals. The current therapeutic management, a combined regimen of poly-chemotherapy and surgery, still remains largely insufficient, as patient survival has not improved in recent decades. Osteosarcomas are very heterogeneous tumors, both at the intra- and inter-tumor level, with no identified driver mutation. Consequently, efforts to improve treatments using targeted therapies have faced this lack of specific osteosarcoma targets. Nevertheless, these tumors are inextricably linked to their local microenvironment, composed of bone, stromal, vascular and immune cells and the osteosarcoma microenvironment is now considered to be essential and supportive for growth and dissemination. This review describes the different actors of the osteosarcoma microenvironment and gives an overview of the past, current, and future strategies of therapy targeting this complex ecosystem, with a focus on the role of extracellular vesicles and on the emergence of multi-kinase inhibitors.


Assuntos
Terapia de Alvo Molecular , Osteossarcoma/patologia , Osteossarcoma/terapia , Microambiente Tumoral , Animais , Remodelação Óssea , Humanos , Sistema Imunitário/patologia , Células-Tronco Mesenquimais/patologia , Osteossarcoma/imunologia , Osteossarcoma/fisiopatologia
18.
Cells ; 9(3)2020 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-32110934

RESUMO

Primary bone tumors can be divided into two classes, benign and malignant. Among the latter group, osteosarcoma and Ewing sarcoma are the most prevalent malignant primary bone tumors in children and adolescents. Despite intensive efforts to improve treatments, almost 40% of patients succumb to the disease. Specifically, the clinical outcome for metastatic osteosarcoma or Ewing sarcoma remains poor; less than 30% of patients who present metastases will survive 5 years after initial diagnosis. One common and specific point of these bone tumors is their ability to deregulate bone homeostasis and remodeling and divert them to their benefit. Over the past years, considerable interest in the Sonic Hedgehog (SHH) pathway has taken place within the cancer research community. The activation of this SHH cascade can be done through different ways and, schematically, two pathways can be described, the canonical and the non-canonical. This review discusses the current knowledge about the involvement of the SHH signaling pathway in skeletal development, pediatric bone sarcoma progression and the related therapeutic options that may be possible for these tumors.


Assuntos
Neoplasias Ósseas/metabolismo , Neoplasias Ósseas/patologia , Progressão da Doença , Proteínas Hedgehog/metabolismo , Osteossarcoma/metabolismo , Osteossarcoma/patologia , Transdução de Sinais , Desenvolvimento Ósseo , Neoplasias Ósseas/terapia , Criança , Humanos , Osteossarcoma/terapia
19.
Cancers (Basel) ; 12(3)2020 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-32164350

RESUMO

Osteosarcoma and Ewing sarcoma are the most prevalent bone pediatric tumors. Despite intensive basic and medical research studies to discover new therapeutics and to improve current treatments, almost 40% of osteosarcoma and Ewing sarcoma patients succumb to the disease. Patients with poor prognosis are related to either the presence of metastases at diagnosis or resistance to chemotherapy. Over the past ten years, considerable interest for the Hippo/YAP signaling pathway has taken place within the cancer research community. This signaling pathway operates at different steps of tumor progression: Primary tumor growth, angiogenesis, epithelial to mesenchymal transition, and metastatic dissemination. This review discusses the current knowledge about the involvement of the Hippo signaling pathway in cancer and specifically in paediatric bone sarcoma progression.

20.
Cancers (Basel) ; 12(12)2020 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-33419295

RESUMO

Although some studies suggested that disruption of the Hippo signaling pathway is associated with osteosarcoma progression, the molecular mechanisms by which YAP regulates primary tumor growth is not fully clarified. In addition, the validation of YAP as a therapeutic target through the use of inhibitors in a preclinical model must be demonstrated. RNA-seq analysis and Kaplan-Meier assays identified a YAP signature in osteosarcoma patients and a correlation with patients' outcomes. Molecular and cellular analysis (RNAseq, PLA, immunoprecipitation, promoter/specific gene, proliferation, cell cycle assays) using overexpression of mutated forms of YAP able or unable to interact with TEAD, indicate that TEAD is crucial for YAP-driven cell proliferation and in vivo tumor growth. In addition, in vivo experiments using an orthotopic mice model of osteosarcoma show that two YAP/TEAD inhibitors, verteporfin and CA3, reduce primary tumor growth. In this context, in vitro experiments demonstrate that these inhibitors decrease YAP expression, YAP/TEAD transcriptional activity and cell viability mainly by their ability to induce cell apoptosis. We thus demonstrate that the YAP/TEAD signaling axis is a central actor in mediating primary tumor growth of osteosarcoma, and that the use of YAP inhibitors may be a promising therapeutic strategy against osteosarcoma tumor growth.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA