Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Virology ; 595: 110089, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38640789

RESUMO

The early and mid-career researchers (EMCRs) of scientific communities represent the forefront of research and the future direction in which a field takes. The opinions of this key demographic are not commonly aggregated to audit fields and precisely demonstrate where challenges lie for the future. To address this, we initiated the inaugural International Emerging Researchers Workshop for the global Hepatitis B and Hepatitis D scientific community (75 individuals). The cohort was split into small discussion groups and the significant problems, challenges, and future directions were assessed. Here, we summarise the outcome of these discussions and outline the future directions suggested by the EMCR community. We show an effective approach to gauging and accumulating the ideas of EMCRs and provide a succinct summary of the significant gaps remaining in the Hepatitis B and Hepatitis D field.


Assuntos
Hepatite B , Hepatite D , Humanos , Hepatite B/virologia , Hepatite D/virologia , Pesquisa Biomédica , Pesquisadores , Vírus da Hepatite B
2.
J Virol ; 97(10): e0072223, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37754761

RESUMO

IMPORTANCE: Chronic hepatitis B is the most important cause of liver cancer worldwide and affects more than 290 million people. Current treatments are mostly suppressive and rarely lead to a cure. Therefore, there is a need for novel and curative drugs that target the host or the causative agent, hepatitis B virus itself. Capsid assembly modulators are an interesting class of antiviral molecules that may one day become part of curative treatment regimens for chronic hepatitis B. Here we explore the characteristics of a particularly interesting subclass of capsid assembly modulators. These so-called non-HAP CAM-As have intriguing properties in cell culture but also clear virus-infected cells from the mouse liver in a gradual and sustained way. We believe they represent a considerable improvement over previously reported molecules and may one day be part of curative treatment combinations for chronic hepatitis B.


Assuntos
Antivirais , Capsídeo , Vírus da Hepatite B , Hepatite B Crônica , Montagem de Vírus , Animais , Humanos , Camundongos , Antivirais/classificação , Antivirais/farmacologia , Antivirais/uso terapêutico , Capsídeo/química , Capsídeo/efeitos dos fármacos , Capsídeo/metabolismo , Proteínas do Capsídeo/química , Proteínas do Capsídeo/efeitos dos fármacos , Proteínas do Capsídeo/metabolismo , Células Cultivadas , Vírus da Hepatite B/química , Vírus da Hepatite B/efeitos dos fármacos , Vírus da Hepatite B/crescimento & desenvolvimento , Vírus da Hepatite B/metabolismo , Hepatite B Crônica/tratamento farmacológico , Hepatite B Crônica/virologia , Técnicas In Vitro , Montagem de Vírus/efeitos dos fármacos , Modelos Animais de Doenças
3.
Hepatology ; 78(4): 1252-1265, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37102495

RESUMO

BACKGROUND AND AIMS: Effective therapies leading to a functional cure for chronic hepatitis B are still lacking. Class A capsid assembly modulators (CAM-As) are an attractive modality to address this unmet medical need. CAM-As induce aggregation of the HBV core protein (HBc) and lead to sustained HBsAg reductions in a chronic hepatitis B mouse model. Here, we investigate the underlying mechanism of action for CAM-A compound RG7907. APPROACH AND RESULTS: RG7907 induced extensive HBc aggregation in vitro , in hepatoma cells, and in primary hepatocytes. In the adeno-associated virus (AAV)-HBV mouse model, the RG7907 treatment led to a pronounced reduction in serum HBsAg and HBeAg, concomitant with clearance of HBsAg, HBc, and AAV-HBV episome from the liver. Transient increases in alanine transaminase, hepatocyte apoptosis, and proliferation markers were observed. These processes were confirmed by RNA sequencing, which also uncovered a role for interferon alpha and gamma signaling, including the interferon-stimulated gene 15 (ISG15) pathway. Finally, the in vitro observation of CAM-A-induced HBc-dependent cell death through apoptosis established the link of HBc aggregation to in vivo loss of infected hepatocytes. CONCLUSIONS: Our study unravels a previously unknown mechanism of action for CAM-As such as RG7907 in which HBc aggregation induces cell death, resulting in hepatocyte proliferation and loss of covalently closed circular DNA or its equivalent, possibly assisted by an induced innate immune response. This represents a promising approach to attain a functional cure for chronic hepatitis B.


Assuntos
Hepatite B Crônica , Hepatite B , Camundongos , Animais , Vírus da Hepatite B , Antígenos de Superfície da Hepatite B/metabolismo , Capsídeo/metabolismo , Hepatócitos/metabolismo , Interferon-alfa/farmacologia , Hepatite B/metabolismo , DNA Viral/genética
4.
Sci Rep ; 13(1): 6124, 2023 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-37059745

RESUMO

The study enrolled 284 patients with chronic hepatitis B virus infection. Participants included people with mild fibrotic lesions (32.5%), moderate to severe fibrotic lesions (27.5%), cirrhotic lesions (22%), hepatocellular carcinoma (HCC) in 5%, and people with no fibrotic lesions in 13%. Eleven SNPs within DIO2, PPARG, ATF3, AKT, GADD45A, and TBX21 were genotyped by mass spectrometry. The rs225014 TT (DIO2) and rs10865710 CC (PPARG) genotypes were independently associated with susceptibility to advanced liver fibrosis. However, cirrhosis was more prevalent in individuals with the GADD45A rs532446 TT and ATF3 rs11119982 TT genotypes. In addition, the rs225014 CC variant of DIO2 was more frequently found in patients with a diagnosis of HCC. These findings suggest that the above SNPs may play a role in HBV-induced liver damage in a Caucasian population.


Assuntos
Carcinoma Hepatocelular , Hepatite B Crônica , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/patologia , Proteínas de Ciclo Celular/genética , Progressão da Doença , Predisposição Genética para Doença , Genótipo , Vírus da Hepatite B/genética , Hepatite B Crônica/complicações , Hepatite B Crônica/genética , Hepatite B Crônica/patologia , Cirrose Hepática/complicações , Neoplasias Hepáticas/patologia , Polimorfismo de Nucleotídeo Único , PPAR gama/genética , Iodotironina Desiodinase Tipo II
5.
Int J Mol Sci ; 23(5)2022 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-35269929

RESUMO

Chronic viral hepatitis is a main cause of liver disease and hepatocellular carcinoma. There are striking similarities in the pathological impact of hepatitis B, C, and D, although these diseases are caused by very different viruses. Paired with the conventional study of protein-host interactions, the rapid technological development of -omics and bioinformatics has allowed highlighting the important role of signaling networks in viral pathogenesis. In this review, we provide an integrated look on the three major viruses associated with chronic viral hepatitis in patients, summarizing similarities and differences in virus-induced cellular signaling relevant to the viral life cycles and liver disease progression.


Assuntos
Carcinoma Hepatocelular , Infecções por Chlamydia , Hepatite B , Hepatite Viral Humana , Neoplasias Hepáticas , Carcinoma Hepatocelular/patologia , Hepatite B/complicações , Vírus da Hepatite B , Vírus Delta da Hepatite , Hepatite Crônica/complicações , Hepatite Viral Humana/complicações , Humanos , Neoplasias Hepáticas/patologia
6.
Gut ; 2022 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-36591611

RESUMO

OBJECTIVES: Chronic hepatitis B virus (HBV) infection is a leading cause of liver disease and hepatocellular carcinoma. A key feature of HBV replication is the synthesis of the covalently close circular (ccc)DNA, not targeted by current treatments and whose elimination would be crucial for viral cure. To date, little is known about cccDNA formation. One major challenge to address this urgent question is the absence of robust models for the study of cccDNA biology. DESIGN: We established a cell-based HBV cccDNA reporter assay and performed a loss-of-function screen targeting 239 genes encoding the human DNA damage response machinery. RESULTS: Overcoming the limitations of current models, the reporter assay enables to quantity cccDNA levels using a robust ELISA as a readout. A loss-of-function screen identified 27 candidate cccDNA host factors, including Y box binding protein 1 (YBX1), a DNA binding protein regulating transcription and translation. Validation studies in authentic infection models revealed a robust decrease in HBV cccDNA levels following silencing, providing proof-of-concept for the importance of YBX1 in the early steps of the HBV life cycle. In patients, YBX1 expression robustly correlates with both HBV load and liver disease progression. CONCLUSION: Our cell-based reporter assay enables the discovery of HBV cccDNA host factors including YBX1 and is suitable for the characterisation of cccDNA-related host factors, antiviral targets and compounds.

7.
Nat Commun ; 12(1): 5525, 2021 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-34535664

RESUMO

Chronic liver disease and hepatocellular carcinoma (HCC) are life-threatening diseases with limited treatment options. The lack of clinically relevant/tractable experimental models hampers therapeutic discovery. Here, we develop a simple and robust human liver cell-based system modeling a clinical prognostic liver signature (PLS) predicting long-term liver disease progression toward HCC. Using the PLS as a readout, followed by validation in nonalcoholic steatohepatitis/fibrosis/HCC animal models and patient-derived liver spheroids, we identify nizatidine, a histamine receptor H2 (HRH2) blocker, for treatment of advanced liver disease and HCC chemoprevention. Moreover, perturbation studies combined with single cell RNA-Seq analyses of patient liver tissues uncover hepatocytes and HRH2+, CLEC5Ahigh, MARCOlow liver macrophages as potential nizatidine targets. The PLS model combined with single cell RNA-Seq of patient tissues enables discovery of urgently needed targets and therapeutics for treatment of advanced liver disease and cancer prevention.


Assuntos
Descoberta de Drogas , Fígado/patologia , Modelos Biológicos , Animais , Carcinogênese/patologia , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Quimioprevenção , Estudos de Coortes , AMP Cíclico/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Modelos Animais de Doenças , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Células HEK293 , Hepacivirus/fisiologia , Hepatite C/genética , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Hepatócitos/patologia , Humanos , Vigilância Imunológica/efeitos dos fármacos , Inflamação/patologia , Fígado/efeitos dos fármacos , Fígado/metabolismo , Cirrose Hepática/patologia , Neoplasias Hepáticas/patologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Macrófagos/patologia , Masculino , Camundongos Knockout , Nizatidina/farmacologia , Prognóstico , Transdução de Sinais/efeitos dos fármacos , Transcriptoma/genética
8.
Viruses ; 13(8)2021 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-34452397

RESUMO

Chronic hepatitis D is one of the most severe and aggressive forms of chronic viral hepatitis with a high risk of developing hepatocellular carcinoma (HCC). It results from the co-infection of the liver with the hepatitis B virus (HBV) and its satellite, the hepatitis D virus (HDV). Although current therapies can control HBV infection, no treatment that efficiently eliminates HDV is available and novel therapeutic strategies are needed. Although the HDV cycle is well described, the lack of simple experimental models has restricted the study of host-virus interactions, even if they represent relevant therapeutic targets. In the last few years, the discovery of the sodium taurocholate co-transporting polypeptide (NTCP) as a key cellular entry factor for HBV and HDV has allowed the development of new cell culture models susceptible to HBV and HDV infection. In this review, we summarize the main in vitro model systems used for the study of HDV entry and infection, discuss their benefits and limitations and highlight perspectives for future developments.


Assuntos
Técnicas de Cultura de Células/métodos , Vírus Delta da Hepatite/fisiologia , Hepatócitos/virologia , Internalização do Vírus , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/virologia , Linhagem Celular Tumoral , Células Cultivadas , Vírus da Hepatite B/metabolismo , Hepatite D/complicações , Hepatite D/virologia , Humanos , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/virologia , Simportadores/metabolismo
9.
Life Sci Alliance ; 4(9)2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34290079

RESUMO

Chronic hepatitis B virus (HBV) infection is a major cause of hepatocellular carcinoma (HCC) world-wide. The molecular mechanisms of viral hepatocarcinogenesis are still partially understood. Here, we applied two complementary single-cell RNA-sequencing protocols to investigate HBV-HCC host cell interactions at the single cell level of patient-derived HCC. Computational analyses revealed a marked HCC heterogeneity with a robust and significant correlation between HBV reads and cancer cell differentiation. Viral reads significantly correlated with the expression of HBV-dependency factors such as HLF in different tumor compartments. Analyses of virus-induced host responses identified previously undiscovered pathways mediating viral carcinogenesis, such as E2F- and MYC targets as well as adipogenesis. Mapping of fused HBV-host cell transcripts allowed the characterization of integration sites in individual cancer cells. Collectively, single-cell RNA-Seq unravels heterogeneity and compartmentalization of both, virus and cancer identifying new candidate pathways for viral hepatocarcinogenesis. The perturbation of pro-carcinogenic gene expression even at low HBV levels highlights the need of HBV cure to eliminate HCC risk.


Assuntos
Carcinoma Hepatocelular/etiologia , Transformação Celular Viral , Vírus da Hepatite B/fisiologia , Hepatite B/complicações , Hepatite B/virologia , Neoplasias Hepáticas/etiologia , Adulto , Idoso , Carcinoma Hepatocelular/mortalidade , Carcinoma Hepatocelular/patologia , Diferenciação Celular , Linhagem Celular Tumoral , Suscetibilidade a Doenças , Feminino , Perfilação da Expressão Gênica , Regulação Viral da Expressão Gênica , Hepatite B Crônica/complicações , Hepatite B Crônica/virologia , Humanos , Neoplasias Hepáticas/mortalidade , Neoplasias Hepáticas/patologia , Masculino , Pessoa de Meia-Idade , Gradação de Tumores , RNA Viral , Análise de Célula Única/métodos , Transcriptoma , Carga Viral
10.
Curr Opin Virol ; 49: 41-51, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34029994

RESUMO

Chronic infection with HBV is a major cause of advanced liver disease and hepatocellular carcinoma. Nucleos(t)ide analogues effectively control HBV replication but viral cure is rare. Hence treatment has often to be administered for an indefinite duration, increasing the risk for selection of drug resistant virus variants. PEG-interferon-α-based therapies can sometimes cure infection but suffer from a low response rate and severe side-effects. CHB is characterized by the persistence of a nuclear covalently closed circular DNA (cccDNA), which is not targeted by approved drugs. Targeting host factors which contribute to the viral life cycle provides new opportunities for the development of innovative therapeutic strategies aiming at HBV cure. An improved understanding of the host immune system has resulted in new potentially curative candidate approaches. Here, we review the recent advances in understanding HBV-host interactions and highlight how this knowledge contributes to exploiting host-targeting strategies for a viral cure.


Assuntos
Antivirais/uso terapêutico , Vírus da Hepatite B/fisiologia , Hepatite B Crônica/tratamento farmacológico , Hepatite B Crônica/virologia , Interações Hospedeiro-Patógeno , Animais , Capsídeo/metabolismo , DNA Circular/metabolismo , DNA Viral/genética , DNA Viral/metabolismo , Vírus da Hepatite B/efeitos dos fármacos , Vírus da Hepatite B/genética , Hepatite B Crônica/imunologia , Humanos , Transportadores de Ânions Orgânicos Dependentes de Sódio/antagonistas & inibidores , Transportadores de Ânions Orgânicos Dependentes de Sódio/metabolismo , Simportadores/antagonistas & inibidores , Simportadores/metabolismo , Transcrição Gênica , Montagem de Vírus , Internalização do Vírus/efeitos dos fármacos
11.
Front Immunol ; 12: 637399, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33708225

RESUMO

Innate immune pathways are the first line of cellular defense against pathogen infections ranging from bacteria to Metazoa. These pathways are activated following the recognition of pathogen associated molecular patterns (PAMPs) by membrane and cytosolic pattern recognition receptors. In addition, some of these cellular sensors can also recognize endogenous danger-associated molecular patterns (DAMPs) arising from damaged or dying cells and triggering innate immune responses. Among the cytosolic nucleic acid sensors, the cyclic guanosine monophosphate-adenosine monophosphate (cGAMP) synthase (cGAS) plays an essential role in the activation of the type I interferon (IFNs) response and the production of pro-inflammatory cytokines. Indeed, upon nucleic acid binding, cGAS synthesizes cGAMP, a second messenger mediating the activation of the STING signaling pathway. The functional conservation of the cGAS-STING pathway during evolution highlights its importance in host cellular surveillance against pathogen infections. Apart from their functions in immunity, cGAS and STING also play major roles in nuclear functions and tumor development. Therefore, cGAS-STING is now considered as an attractive target to identify novel biomarkers and design therapeutics for auto-inflammatory and autoimmune disorders as well as infectious diseases and cancer. Here, we review the current knowledge about the structure of cGAS and the evolution from bacteria to Metazoa and present its main functions in defense against pathogens and cancer, in connection with STING. The advantages and limitations of in vivo models relevant for studying the cGAS-STING pathway will be discussed for the notion of species specificity and in the context of their integration into therapeutic screening assays targeting cGAG and/or STING.


Assuntos
DNA/genética , Doenças do Sistema Imunitário/metabolismo , Nucleotídeos Cíclicos/metabolismo , Nucleotidiltransferases/metabolismo , Animais , DNA/imunologia , Humanos , Interferon Tipo I/genética , Interferon Tipo I/metabolismo , Espaço Intracelular , Proteínas de Membrana/metabolismo , Moléculas com Motivos Associados a Patógenos/imunologia , Receptores de Reconhecimento de Padrão/metabolismo , Transdução de Sinais
12.
Cancers (Basel) ; 12(11)2020 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-33171788

RESUMO

Liver cirrhosis (LC), contributing to more than 1 million of deaths annually, is a major healthcare concern worldwide. Hepatitis B virus (HBV) is a major LC etiological factor, and 15% of patients with chronic HBV infection (CHB) develop LC within 5 years. Recently, novel host genetic determinants were shown to influence HBV lifecycle and CHB course. DNA repair enzymes can affect dynamics of liver damage and are involved in HBV covalently closed circular DNA (cccDNA) formation, an essential step for viral replication. This study aimed to evaluate the possible role of genes representing key DNA-repair pathways in HBV-induced liver damage. MALDI-TOF MS genotyping platform was applied to evaluate variations within XRCC1, XRCC4, ERCC2, ERCC5, RAD52, Mre11, and NBN genes. Apart from older age (p < 0.001), female sex (p = 0.021), portal hypertension (p < 0.001), thrombocytopenia (p < 0.001), high HBV DNA (p = 0.001), and high aspartate aminotransferase (AST) (p < 0.001), we found that G allele at rs238406 (ERCC2, p = 0.025), T allele at rs25487 (XRCC1, p = 0.012), rs13181 GG genotype (ERCC2, p = 0.034), and C allele at rs2735383 (NBN, p = 0.042) were also LC risk factors. The multivariate logistic regression model showed that rs25487 CC (p = 0.005) and rs238406 TT (p = 0.027) were independently associated with lower risk of LC. This study provides evidence for the impact of functional and potentially functional variations in key DNA-repair genes XRCC1 and ERCC2 in HBV-induced liver damage in a Caucasian population.

13.
Nat Commun ; 11(1): 2707, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32483149

RESUMO

Chronic HBV infection is a major cause of liver disease and cancer worldwide. Approaches for cure are lacking, and the knowledge of virus-host interactions is still limited. Here, we perform a genome-wide gain-of-function screen using a poorly permissive hepatoma cell line to uncover host factors enhancing HBV infection. Validation studies in primary human hepatocytes identified CDKN2C as an important host factor for HBV replication. CDKN2C is overexpressed in highly permissive cells and HBV-infected patients. Mechanistic studies show a role for CDKN2C in inducing cell cycle G1 arrest through inhibition of CDK4/6 associated with the upregulation of HBV transcription enhancers. A correlation between CDKN2C expression and disease progression in HBV-infected patients suggests a role in HBV-induced liver disease. Taken together, we identify a previously undiscovered clinically relevant HBV host factor, allowing the development of improved infectious model systems for drug discovery and the study of the HBV life cycle.


Assuntos
Inibidor de Quinase Dependente de Ciclina p18/genética , Mutação com Ganho de Função , Testes Genéticos/métodos , Estudo de Associação Genômica Ampla/métodos , Hepatite B/genética , Linhagem Celular Tumoral , Inibidor de Quinase Dependente de Ciclina p18/metabolismo , Perfilação da Expressão Gênica/métodos , Células HEK293 , Células Hep G2 , Hepatite B/metabolismo , Hepatite B/virologia , Vírus da Hepatite B/fisiologia , Interações entre Hospedeiro e Microrganismos , Humanos , Estimativa de Kaplan-Meier , Fígado/metabolismo , Fígado/patologia , Fígado/virologia , Interferência de RNA , Replicação Viral/fisiologia
14.
Int J Infect Dis ; 96: 260-265, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32387446

RESUMO

OBJECTIVES: The outcomes of hepatitis B virus (HBV) infection vary substantially among affected individuals, providing evidence of the role of host genetic background in the susceptibility to HBV persistence and the dynamics of liver injury progression to cirrhosis and hepatocellular carcinoma (HCC). METHODS: Six single-nucleotide polymorphisms within the interleukin 10 gene (IL10) were genotyped by MALDI-TOF mass spectrometry in 857 patients with chronic HBV infection (CHB), 48 patients with resolved HBV infection, and 100 healthy volunteers. Associations of the selected polymorphisms with susceptibility to chronic HBV infection, liver injury progression, and outcomes were investigated. RESULTS: IL10 -819T (rs1800871), -592A (rs1800872), and +504T (rs3024490) alleles were associated with treatment-induced hepatitis B surface antigen (HBsAg) seroclearance. Additionally, IL10 ATAC haplotype increased the chance of HBsAg loss and was significantly more frequent in patients with less liver injury. Moreover rs1800871TT, rs1518110TT, rs1800872AA, and rs3024490TT genotypes were identified as predictors of a lower FIB-4 score (<0.5). CONCLUSIONS: This study indicates that polymorphisms within the promoter region and intronic sequences of IL10 are associated with chronicity of hepatitis B and with HBV-induced liver damage.


Assuntos
Hepatite B Crônica/genética , Interleucina-10/genética , Adulto , Alelos , Progressão da Doença , Feminino , Genótipo , Antígenos de Superfície da Hepatite B/metabolismo , Hepatite B Crônica/imunologia , Hepatite B Crônica/patologia , Hepatite B Crônica/virologia , Humanos , Fígado/patologia , Masculino , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único
15.
J Clin Med ; 9(1)2020 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-31947588

RESUMO

Hepatitis D virus (HDV) is a small satellite virus of hepatitis B virus (HBV) requiring HBV infection to complete its life cycle. It has been recently estimated that 13% of chronic HBV infected patients (60 million) are co-infected with HDV. Chronic hepatitis D is the most severe form of viral hepatitis with the highest risk to develop cirrhosis and liver cancer. Current treatment is based on pegylated-interferon-alpha which rarely controls HDV infection and is complicated by serious side effects. The development of novel antiviral strategies based on host targeting agents has shown promising results in phase I/II clinical trials. This review summarizes HDV molecular virology and physiopathology as well as new therapeutic approaches targeting HDV host factors.

16.
Gut ; 69(1): 158-167, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-30833451

RESUMO

OBJECTIVE: Hepatitis D virus (HDV) is a circular RNA virus coinfecting hepatocytes with hepatitis B virus. Chronic hepatitis D results in severe liver disease and an increased risk of liver cancer. Efficient therapeutic approaches against HDV are absent. DESIGN: Here, we combined an RNAi loss-of-function and small molecule screen to uncover host-dependency factors for HDV infection. RESULTS: Functional screening unravelled the hypoxia-inducible factor (HIF)-signalling and insulin-resistance pathways, RNA polymerase II, glycosaminoglycan biosynthesis and the pyrimidine metabolism as virus-hepatocyte dependency networks. Validation studies in primary human hepatocytes identified the carbamoyl-phosphatesynthetase 2, aspartate transcarbamylase and dihydroorotase (CAD) enzyme and estrogen receptor alpha (encoded by ESR1) as key host factors for HDV life cycle. Mechanistic studies revealed that the two host factors are required for viral replication. Inhibition studies using N-(phosphonoacetyl)-L-aspartic acid and fulvestrant, specific CAD and ESR1 inhibitors, respectively, uncovered their impact as antiviral targets. CONCLUSION: The discovery of HDV host-dependency factors elucidates the pathogenesis of viral disease biology and opens therapeutic strategies for HDV cure.


Assuntos
Aspartato Carbamoiltransferase/genética , Ácido Aspártico/análogos & derivados , Carbamoil Fosfato Sintase (Glutamina-Hidrolizante)/genética , Di-Hidro-Orotase/genética , Receptor alfa de Estrogênio/metabolismo , Fulvestranto/farmacologia , Hepatite D Crônica/tratamento farmacológico , Ácido Fosfonoacéticos/análogos & derivados , Pirimidinas/biossíntese , Antivirais/farmacologia , Aspartato Carbamoiltransferase/antagonistas & inibidores , Aspartato Carbamoiltransferase/metabolismo , Ácido Aspártico/farmacologia , Carbamoil Fosfato Sintase (Glutamina-Hidrolizante)/antagonistas & inibidores , Carbamoil Fosfato Sintase (Glutamina-Hidrolizante)/metabolismo , Linhagem Celular , Di-Hidro-Orotase/antagonistas & inibidores , Di-Hidro-Orotase/metabolismo , Antagonistas do Receptor de Estrogênio/farmacologia , Receptor alfa de Estrogênio/antagonistas & inibidores , Inativação Gênica , Hepatite D Crônica/genética , Hepatite D Crônica/metabolismo , Vírus Delta da Hepatite/fisiologia , Hepatócitos , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Resistência à Insulina , Estágios do Ciclo de Vida , Mutação com Perda de Função , Ácido Fosfonoacéticos/farmacologia , Interferência de RNA , RNA Interferente Pequeno/genética , RNA Viral/metabolismo , Transdução de Sinais , Replicação Viral
17.
Gastroenterology ; 157(2): 537-551.e9, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30978357

RESUMO

BACKGROUND & AIMS: The mechanisms of hepatitis C virus (HCV) infection, liver disease progression, and hepatocarcinogenesis are only partially understood. We performed genomic, proteomic, and metabolomic analyses of HCV-infected cells and chimeric mice to learn more about these processes. METHODS: Huh7.5.1dif (hepatocyte-like cells) were infected with culture-derived HCV and used in RNA sequencing, proteomic, metabolomic, and integrative genomic analyses. uPA/SCID (urokinase-type plasminogen activator/severe combined immunodeficiency) mice were injected with serum from HCV-infected patients; 8 weeks later, liver tissues were collected and analyzed by RNA sequencing and proteomics. Using differential expression, gene set enrichment analyses, and protein interaction mapping, we identified pathways that changed in response to HCV infection. We validated our findings in studies of liver tissues from 216 patients with HCV infection and early-stage cirrhosis and paired biopsy specimens from 99 patients with hepatocellular carcinoma, including 17 patients with histologic features of steatohepatitis. Cirrhotic liver tissues from patients with HCV infection were classified into 2 groups based on relative peroxisome function; outcomes assessed included Child-Pugh class, development of hepatocellular carcinoma, survival, and steatohepatitis. Hepatocellular carcinomas were classified according to steatohepatitis; the outcome was relative peroxisomal function. RESULTS: We quantified 21,950 messenger RNAs (mRNAs) and 8297 proteins in HCV-infected cells. Upon HCV infection of hepatocyte-like cells and chimeric mice, we observed significant changes in levels of mRNAs and proteins involved in metabolism and hepatocarcinogenesis. HCV infection of hepatocyte-like cells significantly increased levels of the mRNAs, but not proteins, that regulate the innate immune response; we believe this was due to the inhibition of translation in these cells. HCV infection of hepatocyte-like cells increased glucose consumption and metabolism and the STAT3 signaling pathway and reduced peroxisome function. Peroxisomes mediate ß-oxidation of very long-chain fatty acids; we found intracellular accumulation of very long-chain fatty acids in HCV-infected cells, which is also observed in patients with fatty liver disease. Cells in livers from HCV-infected mice had significant reductions in levels of the mRNAs and proteins associated with peroxisome function, indicating perturbation of peroxisomes. We found that defects in peroxisome function were associated with outcomes and features of HCV-associated cirrhosis, fatty liver disease, and hepatocellular carcinoma in patients. CONCLUSIONS: We performed combined transcriptome, proteome, and metabolome analyses of liver tissues from HCV-infected hepatocyte-like cells and HCV-infected mice. We found that HCV infection increases glucose metabolism and the STAT3 signaling pathway and thereby reduces peroxisome function; alterations in the expression levels of peroxisome genes were associated with outcomes of patients with liver diseases. These findings provide insights into liver disease pathogenesis and might be used to identify new therapeutic targets.


Assuntos
Hepacivirus/patogenicidade , Hepatite C Crônica/patologia , Hepatócitos/patologia , Fígado/patologia , Animais , Linhagem Celular Tumoral , Conjuntos de Dados como Assunto , Modelos Animais de Doenças , Perfilação da Expressão Gênica , Glucose/metabolismo , Hepatite C Crônica/metabolismo , Hepatite C Crônica/virologia , Hepatócitos/transplante , Hepatócitos/virologia , Humanos , Fígado/citologia , Fígado/virologia , Metabolômica , Camundongos , Peroxissomos/metabolismo , Peroxissomos/patologia , Proteômica , Fator de Transcrição STAT3/metabolismo , Quimeras de Transplante
18.
Hepatology ; 70(2): 766, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30991445
19.
Cell Mol Life Sci ; 75(21): 3895-3905, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30097692

RESUMO

Chronic hepatitis B, C and D virus (HBV, HCV and HDV) infections are a major cause of liver disease and cancer worldwide. Despite employing distinct replication strategies, the three viruses are exclusively hepatotropic, and therefore depend on hepatocyte-specific host factors. The sodium taurocholate co-transporting polypeptide (NTCP), a transmembrane protein highly expressed in human hepatocytes that mediates the transport of bile acids, plays a key role in HBV and HDV entry into hepatocytes. Recently, NTCP has been shown to modulate HCV infection of hepatocytes by regulating innate antiviral immune responses in the liver. Here, we review the current knowledge of the functional role and the molecular and cellular biology of NTCP in the life cycle of the three major hepatotropic viruses, highlight the impact of NTCP as an antiviral target and discuss future avenues of research.


Assuntos
Hepacivirus/genética , Vírus da Hepatite B/genética , Vírus Delta da Hepatite/genética , Transportadores de Ânions Orgânicos Dependentes de Sódio/genética , Simportadores/genética , Hepacivirus/patogenicidade , Hepatite B/genética , Hepatite B/virologia , Vírus da Hepatite B/patogenicidade , Hepatite C/genética , Hepatite C/virologia , Hepatite D/genética , Hepatite D/virologia , Vírus Delta da Hepatite/patogenicidade , Hepatócitos/patologia , Humanos , Estágios do Ciclo de Vida/genética , Internalização do Vírus
20.
Hepatology ; 68(5): 1695-1709, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-29679386

RESUMO

Chronic hepatitis B virus (HBV) infection is a major cause of chronic liver disease and cancer worldwide. The mechanisms of viral genome sensing and the evasion of innate immune responses by HBV infection are still poorly understood. Recently, the cyclic guanosine monophosphate-adenosine monophosphate synthase (cGAS) was identified as a DNA sensor. In this study, we investigated the functional role of cGAS in sensing HBV infection and elucidate the mechanisms of viral evasion. We performed functional studies including loss-of-function and gain-of-function experiments combined with cGAS effector gene expression profiling in an infectious cell culture model, primary human hepatocytes, and HBV-infected human liver chimeric mice. Here, we show that cGAS is expressed in the human liver, primary human hepatocytes, and human liver chimeric mice. While naked relaxed-circular HBV DNA is sensed in a cGAS-dependent manner in hepatoma cell lines and primary human hepatocytes, host cell recognition of viral nucleic acids is abolished during HBV infection, suggesting escape from sensing, likely during packaging of the genome into the viral capsid. While the hepatocyte cGAS pathway is functionally active, as shown by reduction of viral covalently closed circular DNA levels in gain-of-function studies, HBV infection suppressed cGAS expression and function in cell culture models and humanized mice. Conclusion: HBV exploits multiple strategies to evade sensing and antiviral activity of cGAS and its effector pathways.


Assuntos
Vírus da Hepatite B/patogenicidade , Hepatite B/fisiopatologia , Hepatócitos/virologia , Evasão da Resposta Imune/fisiologia , Nucleotídeos Cíclicos/metabolismo , Animais , Western Blotting , Técnicas de Cultura de Células , DNA Viral/imunologia , Perfilação da Expressão Gênica/métodos , Hepatite B/imunologia , Hepatócitos/metabolismo , Interações Hospedeiro-Patógeno , Humanos , Evasão da Resposta Imune/imunologia , Hibridização in Situ Fluorescente/métodos , Camundongos , Reação em Cadeia da Polimerase em Tempo Real
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA