Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Endocr Pathol ; 2024 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-39331358

RESUMO

Glucagonomas are functioning pancreatic neuroendocrine tumors (PanNETs) responsible for glucagonoma syndrome. This study aims to shed light on the clinicopathological and molecular features of these neoplasms. Six patients with glucagonomas were identified. All neoplasms were investigated with immunohistochemistry for neuroendocrine markers (Synaptophysin, Chromogranin-A), ATRX, DAXX, ARX, and PDX1 transcription factors. Fluorescent in situ hybridization (FISH) for assessing alternative lengthening of telomeres (ALT), and next-generation sequencing (NGS) for molecular profiling were performed. All cases were large single masses (mean size of 8.2 cm), with necrolytic migratory erythema as the most common symptom (6/6 cases, 100%). All neoplasms were well-differentiated G1 tumors, except one case that was G2. The tumors consistently showed classic/conventional histomorphology, with solid-trabecular and nested architecture. Lymphatic and vascular invasion (6/6, 100%), perineural infiltration (4/6, 66.6%), and nodal metastasis (4/6, 66.6%) were frequently observed. Transcription factors expression showed strong ARX expression in all tumors, and PDX1 expression in 5/6 cases (83.3%), indicating co-occurring alpha- and beta-cell differentiation. NGS showed recurrent somatic MEN1 and ATRX/DAXX biallelic inactivation. Cases with ATRX or DAXX mutations also showed matched loss of ATRX or DAXX protein expression and ALT. One case harbored somatic MUTYH inactivation and showed a high tumor mutational burden (TMB, 41.0 mut/Mb). During follow-up, one patient died of the disease, and four patients developed distant metastasis. Pancreatic glucagonomas are distinct PanNETs with specific clinicopathological and molecular features, including histological aspects of biological aggressiveness, co-occurring alpha- and beta-cell differentiation, MEN1 and DAXX/ATRX mutations enrichment, and the possible presence of high-TMB as an actionable marker.

2.
Nat Nanotechnol ; 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39085390

RESUMO

Regulating innate immunity is an emerging approach to improve cancer immunotherapy. Such regulation requires engaging myeloid cells by delivering immunomodulatory compounds to hematopoietic organs, including the spleen. Here we present a polymersome-based nanocarrier with splenic avidity and propensity for red pulp myeloid cell uptake. We characterized the in vivo behaviour of four chemically identical yet topologically different polymersomes by in vivo positron emission tomography imaging and innovative flow and mass cytometry techniques. Upon intravenous administration, relatively large and spherical polymersomes accumulated rapidly in the spleen and efficiently targeted myeloid cells in the splenic red pulp. When loaded with ß-glucan, intravenously administered polymersomes significantly reduced tumour growth in a mouse melanoma model. We initiated our nanotherapeutic's clinical translation with a biodistribution study in non-human primates, which revealed that the platform's splenic avidity is preserved across species.

3.
Npj Imaging ; 2(1): 12, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38765879

RESUMO

Macrophages are key inflammatory mediators in many pathological conditions, including cardiovascular disease (CVD) and cancer, the leading causes of morbidity and mortality worldwide. This makes macrophage burden a valuable diagnostic marker and several strategies to monitor these cells have been reported. However, such strategies are often high-priced, non-specific, invasive, and/or not quantitative. Here, we developed a positron emission tomography (PET) radiotracer based on apolipoprotein A1 (ApoA1), the main protein component of high-density lipoprotein (HDL), which has an inherent affinity for macrophages. We radiolabeled an ApoA1-mimetic peptide (mA1) with zirconium-89 (89Zr) to generate a lipoprotein-avid PET probe (89Zr-mA1). We first characterized 89Zr-mA1's affinity for lipoproteins in vitro by size exclusion chromatography. To study 89Zr-mA1's in vivo behavior and interaction with endogenous lipoproteins, we performed extensive studies in wildtype C57BL/6 and Apoe-/- hypercholesterolemic mice. Subsequently, we used in vivo PET imaging to study macrophages in melanoma and myocardial infarction using mouse models. The tracer's cell specificity was assessed by histology and mass cytometry (CyTOF). Our data show that 89Zr-mA1 associates with lipoproteins in vitro. This is in line with our in vivo experiments, in which we observed longer 89Zr-mA1 circulation times in hypercholesterolemic mice compared to C57BL/6 controls. 89Zr-mA1 displayed a tissue distribution profile similar to ApoA1 and HDL, with high kidney and liver uptake as well as substantial signal in the bone marrow and spleen. The tracer also accumulated in tumors of melanoma-bearing mice and in the ischemic myocardium of infarcted animals. In these sites, CyTOF analyses revealed that natZr-mA1 was predominantly taken up by macrophages. Our results demonstrate that 89Zr-mA1 associates with lipoproteins and hence accumulates in macrophages in vivo. 89Zr-mA1's high uptake in these cells makes it a promising radiotracer for non-invasively and quantitatively studying conditions characterized by marked changes in macrophage burden.

4.
Clin Gastroenterol Hepatol ; 22(6): 1245-1254.e10, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38382726

RESUMO

BACKGROUND & AIMS: Cytologic and histopathologic diagnosis of non-ductal pancreatic neoplasms can be challenging in daily clinical practice, whereas it is crucial for therapy and prognosis. The cancer methylome is successfully used as a diagnostic tool in other cancer entities. Here, we investigate if methylation profiling can improve the diagnostic work-up of pancreatic neoplasms. METHODS: DNA methylation data were obtained for 301 primary tumors spanning 6 primary pancreatic neoplasms and 20 normal pancreas controls. Neural Network, Random Forest, and extreme gradient boosting machine learning models were trained to distinguish between tumor types. Methylation data of 29 nonpancreatic neoplasms (n = 3708) were used to develop an algorithm capable of detecting neoplasms of non-pancreatic origin. RESULTS: After benchmarking 3 state-of-the-art machine learning models, the random forest model emerged as the best classifier with 96.9% accuracy. All classifications received a probability score reflecting the confidence of the prediction. Increasing the score threshold improved the random forest classifier performance up to 100% with 87% of samples with scores surpassing the cutoff. Using a logistic regression model, detection of nonpancreatic neoplasms achieved an area under the curve of >0.99. Analysis of biopsy specimens showed concordant classification with their paired resection sample. CONCLUSIONS: Pancreatic neoplasms can be classified with high accuracy based on DNA methylation signatures. Additionally, non-pancreatic neoplasms are identified with near perfect precision. In summary, methylation profiling can serve as a valuable adjunct in the diagnosis of pancreatic neoplasms with minimal risk for misdiagnosis, even in the pre-operative setting.


Assuntos
Metilação de DNA , Neoplasias Pancreáticas , Humanos , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/diagnóstico , Neoplasias Pancreáticas/classificação , Neoplasias Pancreáticas/patologia , Masculino , Feminino , Idoso , Pessoa de Meia-Idade
5.
Am J Surg Pathol ; 47(7): 785-791, 2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-37199453

RESUMO

A clinical diagnosis of multiple endocrine neoplasia type 1 (MEN1) syndrome is usually confirmed with genetic testing in the germline. It is expected that menin protein expression is lost in MEN1-related tumors. Therefore, we investigated the potential of menin immunohistochemistry in parathyroid adenomas as an additional tool in the recognition and genetic diagnosis of MEN1 syndrome. Local pathology archives were searched for parathyroid tumors from patients with MEN1 syndrome and without MEN1, including sporadic, patients with multiple endocrine neoplasia type 2A and hyperparathyroidism-jaw parathyroid tumors. Menin immunohistochemistry was performed and its use to identify MEN1-related tumors was assessed. Twenty-nine parathyroid tumors from 16 patients with MEN1 and 61 patients with parathyroid tumors from 32 non-MEN1 were evaluated. Immunohistochemical nuclear menin loss in one or more tumors was found in 100% of patients with MEN1 and 9% of patients with non-MEN1. In patients with multiple tumors, menin loss in at least one tumor was seen in 100% of 8 patients with MEN1 and 21% of patients with 14 non-MEN1. Using a cutoff of at least 2 tumors showing menin loss per patient, the positive and negative predictive values for the diagnosis MEN1 were both 100%. The practical and additional value of menin immunohistochemistry in clinical genetic MEN1 diagnosis is further illustrated by menin immunohistochemistry in 2 cases with a germline variant of unknown significance in the MEN1 gene. Menin immunohistochemistry is useful in the recognition of MEN1 syndrome as well as in the clinical genetic analysis of patients with inconclusive MEN1 germline testing.


Assuntos
Neoplasia Endócrina Múltipla Tipo 1 , Neoplasias das Paratireoides , Humanos , Neoplasia Endócrina Múltipla Tipo 1/diagnóstico , Neoplasia Endócrina Múltipla Tipo 1/genética , Imuno-Histoquímica , Neoplasias das Paratireoides/diagnóstico , Neoplasias das Paratireoides/genética , Testes Genéticos , Mutação em Linhagem Germinativa
6.
Surg Oncol Clin N Am ; 32(2): 343-371, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36925190

RESUMO

Pancreatic neuroendocrine tumors (PNETs) occur in < 1/100,000 patients and most are nonfunctioning (NF). Approximately 5% occur as part of multiple endocrine neoplasia type 1. Anatomic and molecular imaging have a pivotal role in the diagnosis, staging and active surveillance. Surgery is generally recommended for nonfunctional pancreatic neuroendocrine tumors (NF-PNETs) >2 cm to prevent metastases. For tumors ≤2 cm, active surveillance is a viable alternative. Tumor size and grade are important factors to guide management. Assessment of death domain-associated protein 6/alpha-thalassemia/mental retardation X-linked and alternative lengthening of telomeres are promising novel prognostic markers. This review summarizes the status of surveillance and nonsurgical management for small NF-PNETs, including factors that can guide management.


Assuntos
Neoplasia Endócrina Múltipla Tipo 1 , Tumores Neuroectodérmicos Primitivos , Tumores Neuroendócrinos , Neoplasias Pancreáticas , Humanos , Tumores Neuroendócrinos/patologia , Neoplasias Pancreáticas/patologia , Neoplasia Endócrina Múltipla Tipo 1/patologia , Neoplasia Endócrina Múltipla Tipo 1/cirurgia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA