Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 999, 2023 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-36890170

RESUMO

Dominant mutations in tyrosyl-tRNA synthetase (YARS1) and six other tRNA ligases cause Charcot-Marie-Tooth peripheral neuropathy (CMT). Loss of aminoacylation is not required for their pathogenicity, suggesting a gain-of-function disease mechanism. By an unbiased genetic screen in Drosophila, we link YARS1 dysfunction to actin cytoskeleton organization. Biochemical studies uncover yet unknown actin-bundling property of YARS1 to be enhanced by a CMT mutation, leading to actin disorganization in the Drosophila nervous system, human SH-SY5Y neuroblastoma cells, and patient-derived fibroblasts. Genetic modulation of F-actin organization improves hallmark electrophysiological and morphological features in neurons of flies expressing CMT-causing YARS1 mutations. Similar beneficial effects are observed in flies expressing a neuropathy-causing glycyl-tRNA synthetase. Hence, in this work, we show that YARS1 is an evolutionary-conserved F-actin organizer which links the actin cytoskeleton to tRNA-synthetase-induced neurodegeneration.


Assuntos
Actinas , Tirosina-tRNA Ligase , Animais , Humanos , Actinas/metabolismo , Doença de Charcot-Marie-Tooth/genética , Drosophila/genética , Glicina-tRNA Ligase/genética , Mutação , RNA de Transferência , Tirosina-tRNA Ligase/genética , Tirosina-tRNA Ligase/metabolismo , Linhagem Celular Tumoral
2.
Elife ; 92020 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-33349335

RESUMO

Synaptojanin1 (Synj1) is a phosphoinositide phosphatase, important in clathrin uncoating during endocytosis of presynaptic vesicles. It was identified as a potential drug target for Alzheimer's disease, Down syndrome, and TBC1D24-associated epilepsy, while also loss-of-function mutations in Synj1 are associated with epilepsy and Parkinson's disease. Despite its involvement in a range of disorders, structural, and detailed mechanistic information regarding the enzyme is lacking. Here, we report the crystal structure of the 5-phosphatase domain of Synj1. Moreover, we also present a structure of this domain bound to the substrate diC8-PI(3,4,5)P3, providing the first image of a 5-phosphatase with a trapped substrate in its active site. Together with an analysis of the contribution of the different inositide phosphate groups to catalysis, these structures provide new insights in the Synj1 mechanism. Finally, we analysed the effect of three clinical missense mutations (Y793C, R800C, Y849C) on catalysis, unveiling the molecular mechanisms underlying Synj1-associated disease.


Assuntos
Monoéster Fosfórico Hidrolases/química , Monoéster Fosfórico Hidrolases/genética , Monoéster Fosfórico Hidrolases/metabolismo , Humanos , Mutação de Sentido Incorreto , Conformação Proteica , Domínios Proteicos
3.
Brain ; 142(8): 2319-2335, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31257402

RESUMO

Genetic mutations in TBC1D24 have been associated with multiple phenotypes, with epilepsy being the main clinical manifestation. The TBC1D24 protein consists of the unique association of a Tre2/Bub2/Cdc16 (TBC) domain and a TBC/lysin motif domain/catalytic (TLDc) domain. More than 50 missense and loss-of-function mutations have been described and are spread over the entire protein. Through whole genome/exome sequencing we identified compound heterozygous mutations, R360H and G501R, within the TLDc domain, in an index family with a Rolandic epilepsy exercise-induced dystonia phenotype (http://omim.org/entry/608105). A 20-year long clinical follow-up revealed that epilepsy was self-limited in all three affected patients, but exercise-induced dystonia persisted into adulthood in two. Furthermore, we identified three additional sporadic paediatric patients with a remarkably similar phenotype, two of whom had compound heterozygous mutations consisting of an in-frame deletion I81_K84 and an A500V mutation, and the third carried T182M and G511R missense mutations, overall revealing that all six patients harbour a missense mutation in the subdomain of TLDc between residues 500 and 511. We solved the crystal structure of the conserved Drosophila TLDc domain. This allowed us to predict destabilizing effects of the G501R and G511R mutations and, to a lesser degree, of R360H and potentially A500V. Next, we characterized the functional consequences of a strong and a weak TLDc mutation (TBC1D24G501R and TBC1D24R360H) using Drosophila, where TBC1D24/Skywalker regulates synaptic vesicle trafficking. In a Drosophila model neuronally expressing human TBC1D24, we demonstrated that the TBC1D24G501R TLDc mutation causes activity-induced locomotion and synaptic vesicle trafficking defects, while TBC1D24R360H is benign. The neuronal phenotypes of the TBC1D24G501R mutation are consistent with exacerbated oxidative stress sensitivity, which is rescued by treating TBC1D24G501R mutant animals with antioxidants N-acetylcysteine amide or α-tocopherol as indicated by restored synaptic vesicle trafficking levels and sustained behavioural activity. Our data thus show that mutations in the TLDc domain of TBC1D24 cause Rolandic-type focal motor epilepsy and exercise-induced dystonia. The humanized TBC1D24G501R fly model exhibits sustained activity and vesicle transport defects. We propose that the TBC1D24/Sky TLDc domain is a reactive oxygen species sensor mediating synaptic vesicle trafficking rates that, when dysfunctional, causes a movement disorder in patients and flies. The TLDc and TBC domain mutations' response to antioxidant treatment we observed in the animal model suggests a potential for combining antioxidant-based therapeutic approaches to TBC1D24-associated disorders with previously described lipid-altering strategies for TBC domain mutations.


Assuntos
Acetilcisteína/análogos & derivados , Antioxidantes/uso terapêutico , Modelos Animais de Doenças , Drosophila melanogaster/fisiologia , Distonia/tratamento farmacológico , Epilepsia Rolândica/genética , Proteínas Ativadoras de GTPase/genética , Esforço Físico , alfa-Tocoferol/uso terapêutico , Acetilcisteína/uso terapêutico , Adolescente , Motivos de Aminoácidos/genética , Sequência de Aminoácidos , Animais , Animais Geneticamente Modificados , Transporte Biológico/efeitos dos fármacos , Domínio Catalítico/genética , Criança , Pré-Escolar , Cristalografia por Raios X , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Distonia/etiologia , Epilepsia Rolândica/tratamento farmacológico , Feminino , Proteínas Ativadoras de GTPase/química , Proteínas Ativadoras de GTPase/fisiologia , Humanos , Lactente , Locomoção/genética , Locomoção/fisiologia , Masculino , Modelos Moleculares , Mutação de Sentido Incorreto , Neurônios/fisiologia , Estresse Oxidativo , Linhagem , Conformação Proteica , Espécies Reativas de Oxigênio/metabolismo , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Deleção de Sequência , Homologia de Sequência de Aminoácidos , Vesículas Sinápticas/metabolismo , Proteínas rab de Ligação ao GTP/química , Proteínas rab de Ligação ao GTP/genética
5.
EMBO J ; 36(10): 1392-1411, 2017 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-28331029

RESUMO

Presynaptic terminals are metabolically active and accrue damage through continuous vesicle cycling. How synapses locally regulate protein homeostasis is poorly understood. We show that the presynaptic lipid phosphatase synaptojanin is required for macroautophagy, and this role is inhibited by the Parkinson's disease mutation R258Q. Synaptojanin drives synaptic endocytosis by dephosphorylating PI(4,5)P2, but this function appears normal in SynaptojaninRQ knock-in flies. Instead, R258Q affects the synaptojanin SAC1 domain that dephosphorylates PI(3)P and PI(3,5)P2, two lipids found in autophagosomal membranes. Using advanced imaging, we show that SynaptojaninRQ mutants accumulate the PI(3)P/PI(3,5)P2-binding protein Atg18a on nascent synaptic autophagosomes, blocking autophagosome maturation at fly synapses and in neurites of human patient induced pluripotent stem cell-derived neurons. Additionally, we observe neurodegeneration, including dopaminergic neuron loss, in SynaptojaninRQ flies. Thus, synaptojanin is essential for macroautophagy within presynaptic terminals, coupling protein turnover with synaptic vesicle cycling and linking presynaptic-specific autophagy defects to Parkinson's disease.


Assuntos
Autofagossomos/metabolismo , Autofagia , Proteínas do Tecido Nervoso/metabolismo , Monoéster Fosfórico Hidrolases/metabolismo , Terminações Pré-Sinápticas/enzimologia , Terminações Pré-Sinápticas/metabolismo , Substituição de Aminoácidos , Animais , Proteínas Relacionadas à Autofagia/análise , Células Cultivadas , Drosophila , Humanos , Proteínas de Membrana/análise , Mutação de Sentido Incorreto , Proteínas do Tecido Nervoso/genética , Doença de Parkinson/patologia , Fosfatos de Fosfatidilinositol/metabolismo , Monoéster Fosfórico Hidrolases/genética
7.
J Cell Biol ; 216(3): 695-708, 2017 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-28137779

RESUMO

PINK1 is mutated in Parkinson's disease (PD), and mutations cause mitochondrial defects that include inefficient electron transport between complex I and ubiquinone. Neurodegeneration is also connected to changes in lipid homeostasis, but how these are related to PINK1-induced mitochondrial dysfunction is unknown. Based on an unbiased genetic screen, we found that partial genetic and pharmacological inhibition of fatty acid synthase (FASN) suppresses toxicity induced by PINK1 deficiency in flies, mouse cells, patient-derived fibroblasts, and induced pluripotent stem cell-derived dopaminergic neurons. Lower FASN activity in PINK1 mutants decreases palmitate levels and increases the levels of cardiolipin (CL), a mitochondrial inner membrane-specific lipid. Direct supplementation of CL to isolated mitochondria not only rescues the PINK1-induced complex I defects but also rescues the inefficient electron transfer between complex I and ubiquinone in specific mutants. Our data indicate that genetic or pharmacologic inhibition of FASN to increase CL levels bypasses the enzymatic defects at complex I in a PD model.


Assuntos
Cardiolipinas/metabolismo , Complexo I de Transporte de Elétrons/metabolismo , Transporte de Elétrons/fisiologia , Proteínas Quinases/metabolismo , Ubiquinona/metabolismo , Animais , Linhagem Celular Tumoral , Neurônios Dopaminérgicos/metabolismo , Ácido Graxo Sintases/metabolismo , Fibroblastos/metabolismo , Células HeLa , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Camundongos , Mitocôndrias/metabolismo , Mutação/genética , Proteínas Quinases/genética
8.
Nat Commun ; 8: 13660, 2017 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-28045048

RESUMO

Syntaxin1A is organized in nanoclusters that are critical for the docking and priming of secretory vesicles from neurosecretory cells. Whether and how these nanoclusters are affected by neurotransmitter release in nerve terminals from a living organism is unknown. Here we imaged photoconvertible syntaxin1A-mEos2 in the motor nerve terminal of Drosophila larvae by single-particle tracking photoactivation localization microscopy. Opto- and thermo-genetic neuronal stimulation increased syntaxin1A-mEos2 mobility, and reduced the size and molecular density of nanoclusters, suggesting an activity-dependent release of syntaxin1A from the confinement of nanoclusters. Syntaxin1A mobility was increased by mutating its polyphosphoinositide-binding site or preventing SNARE complex assembly via co-expression of tetanus toxin light chain. In contrast, syntaxin1A mobility was reduced by preventing SNARE complex disassembly. Our data demonstrate that polyphosphoinositide favours syntaxin1A trapping, and show that SNARE complex disassembly leads to syntaxin1A dissociation from nanoclusters. Lateral diffusion and trapping of syntaxin1A in nanoclusters therefore dynamically regulate neurotransmitter release.


Assuntos
Proteínas de Drosophila/genética , Drosophila melanogaster/fisiologia , Fosfatos de Fosfatidilinositol/metabolismo , Transmissão Sináptica , Sintaxina 1/genética , Animais , Sítios de Ligação , Difusão , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citologia , Regulação da Expressão Gênica , Larva/citologia , Larva/fisiologia , Metaloendopeptidases/genética , Metaloendopeptidases/metabolismo , Imagem Molecular/métodos , Neurônios Motores/metabolismo , Neurônios Motores/ultraestrutura , Optogenética , Ligação Proteica , Transporte Proteico , Proteínas SNARE/genética , Proteínas SNARE/metabolismo , Sinapses/metabolismo , Sinapses/ultraestrutura , Sintaxina 1/metabolismo , Toxina Tetânica/genética , Toxina Tetânica/metabolismo
9.
Metab Eng ; 43(Pt B): 187-197, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-27847310

RESUMO

Mutations in succinate dehydrogenase (SDH) are associated with tumor development and neurodegenerative diseases. Only in tumors, loss of SDH activity is accompanied with the loss of complex I activity. Yet, it remains unknown whether the metabolic phenotype of SDH mutant tumors is driven by loss of complex I function, and whether this contributes to the peculiarity of tumor development versus neurodegeneration. We addressed this question by decoupling loss of SDH and complex I activity in cancer cells and neurons. We found that sole loss of SDH activity was not sufficient to recapitulate the metabolic phenotype of SDH mutant tumors, because it failed to decrease mitochondrial respiration and to activate reductive glutamine metabolism. These metabolic phenotypes were only induced upon the additional loss of complex I activity. Thus, we show that complex I function defines the metabolic differences between SDH mutation associated tumors and neurodegenerative diseases, which could open novel therapeutic options against both diseases.


Assuntos
Complexo I de Transporte de Elétrons , Mutação , Proteínas de Neoplasias , Neoplasias , Succinato Desidrogenase , Linhagem Celular Tumoral , Complexo I de Transporte de Elétrons/genética , Complexo I de Transporte de Elétrons/metabolismo , Humanos , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Neoplasias/enzimologia , Neoplasias/genética , Neoplasias/patologia , Neurônios/enzimologia , Neurônios/patologia , Succinato Desidrogenase/genética , Succinato Desidrogenase/metabolismo
10.
Cell Rep ; 17(4): 931-940, 2016 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-27760323

RESUMO

Tau pathology propagates within synaptically connected neuronal circuits, but the underlying mechanisms are unclear. BIN1-amphiphysin2 is the second most prevalent genetic risk factor for late-onset Alzheimer's disease. In diseased brains, the BIN1-amphiphysin2 neuronal isoform is downregulated. Here, we show that lowering BIN1-amphiphysin2 levels in neurons promotes Tau pathology propagation whereas overexpression of neuronal BIN1-amphiphysin2 inhibits the process in two in vitro models. Increased Tau propagation is caused by increased endocytosis, given our finding that BIN1-amphiphysin2 negatively regulates endocytic flux. Furthermore, blocking endocytosis by inhibiting dynamin also reduces Tau pathology propagation. Using a galectin-3-binding assay, we show that internalized Tau aggregates damage the endosomal membrane, allowing internalized aggregates to leak into the cytoplasm to propagate pathology. Our work indicates that lower BIN1 levels promote the propagation of Tau pathology by efficiently increasing aggregate internalization by endocytosis and endosomal trafficking.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Tauopatias/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Proteínas tau/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/deficiência , Animais , Células Cultivadas , Dinaminas/metabolismo , Endocitose , Endossomos/metabolismo , Membranas Intracelulares/metabolismo , Proteínas do Tecido Nervoso/deficiência , Neurônios/metabolismo , Agregados Proteicos , Isoformas de Proteínas/metabolismo , Ratos Wistar , Tauopatias/patologia , Proteínas Supressoras de Tumor/deficiência
11.
Cell Rep ; 17(4): 1071-1086, 2016 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-27720640

RESUMO

Endophilin-A, a well-characterized endocytic adaptor essential for synaptic vesicle recycling, has recently been linked to neurodegeneration. We report here that endophilin-A deficiency results in impaired movement, age-dependent ataxia, and neurodegeneration in mice. Transcriptional analysis of endophilin-A mutant mice, complemented by proteomics, highlighted ataxia- and protein-homeostasis-related genes and revealed upregulation of the E3-ubiquitin ligase FBXO32/atrogin-1 and its transcription factor FOXO3A. FBXO32 overexpression triggers apoptosis in cultured cells and neurons but, remarkably, coexpression of endophilin-A rescues it. FBXO32 interacts with all three endophilin-A proteins. Similarly to endophilin-A, FBXO32 tubulates membranes and localizes on clathrin-coated structures. Additionally, FBXO32 and endophilin-A are necessary for autophagosome formation, and both colocalize transiently with autophagosomes. Our results point to a role for endophilin-A proteins in autophagy and protein degradation, processes that are impaired in their absence, potentially contributing to neurodegeneration and ataxia.


Assuntos
Aciltransferases/deficiência , Autofagia , Encéfalo/metabolismo , Proteína Forkhead Box O3/metabolismo , Proteínas Musculares/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteínas Ligases SKP Culina F-Box/metabolismo , Ubiquitina/metabolismo , Aciltransferases/metabolismo , Envelhecimento/patologia , Animais , Apoptose , Ataxia/genética , Ataxia/patologia , Autofagossomos/metabolismo , Proteína Forkhead Box O3/genética , Células HeLa , Hipocampo/metabolismo , Hipocampo/patologia , Homeostase/genética , Humanos , Masculino , Camundongos , Camundongos Knockout , Transtornos dos Movimentos/complicações , Transtornos dos Movimentos/patologia , Proteínas Musculares/genética , Mutação/genética , Degeneração Neural/complicações , Degeneração Neural/patologia , Doença de Parkinson/genética , Doença de Parkinson/patologia , Ligação Proteica , Proteínas Ligases SKP Culina F-Box/genética , Transcrição Gênica , Regulação para Cima
12.
Nat Commun ; 7: 11710, 2016 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-27271794

RESUMO

ATP production requires the establishment of an electrochemical proton gradient across the inner mitochondrial membrane. Mitochondrial uncouplers dissipate this proton gradient and disrupt numerous cellular processes, including vesicular trafficking, mainly through energy depletion. Here we show that Endosidin9 (ES9), a novel mitochondrial uncoupler, is a potent inhibitor of clathrin-mediated endocytosis (CME) in different systems and that ES9 induces inhibition of CME not because of its effect on cellular ATP, but rather due to its protonophore activity that leads to cytoplasm acidification. We show that the known tyrosine kinase inhibitor tyrphostinA23, which is routinely used to block CME, displays similar properties, thus questioning its use as a specific inhibitor of cargo recognition by the AP-2 adaptor complex via tyrosine motif-based endocytosis signals. Furthermore, we show that cytoplasm acidification dramatically affects the dynamics and recruitment of clathrin and associated adaptors, and leads to reduction of phosphatidylinositol 4,5-biphosphate from the plasma membrane.


Assuntos
Ácidos/metabolismo , Clatrina/metabolismo , Endocitose/efeitos dos fármacos , Mitocôndrias/metabolismo , Desacopladores/farmacologia , Trifosfato de Adenosina/deficiência , Trifosfato de Adenosina/metabolismo , Arabidopsis/efeitos dos fármacos , Arabidopsis/metabolismo , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Metabolismo Energético/efeitos dos fármacos , Células HeLa , Humanos , Mitocôndrias/efeitos dos fármacos , Organelas/efeitos dos fármacos , Organelas/metabolismo , Transporte Proteico/efeitos dos fármacos , Quinolonas/química , Quinolonas/farmacologia
13.
Hum Mol Genet ; 24(23): 6736-55, 2015 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-26376863

RESUMO

ATP6AP2, an essential accessory component of the vacuolar H+ ATPase (V-ATPase), has been associated with intellectual disability (ID) and Parkinsonism. ATP6AP2 has been implicated in several signalling pathways; however, little is known regarding its role in the nervous system. To decipher its function in behaviour and cognition, we generated and characterized conditional knockdowns of ATP6AP2 in the nervous system of Drosophila and mouse models. In Drosophila, ATP6AP2 knockdown induced defective phototaxis and vacuolated photoreceptor neurons and pigment cells when depleted in eyes and altered short- and long-term memory when depleted in the mushroom body. In mouse, conditional Atp6ap2 deletion in glutamatergic neurons (Atp6ap2(Camk2aCre/0) mice) caused increased spontaneous locomotor activity and altered fear memory. Both Drosophila ATP6AP2 knockdown and Atp6ap2(Camk2aCre/0) mice presented with presynaptic transmission defects, and with an abnormal number and morphology of synapses. In addition, Atp6ap2(Camk2aCre/0) mice showed autophagy defects that led to axonal and neuronal degeneration in the cortex and hippocampus. Surprisingly, axon myelination was affected in our mutant mice, and axonal transport alterations were observed in Drosophila. In accordance with the identified phenotypes across species, genome-wide transcriptome profiling of Atp6ap2(Camk2aCre/0) mouse hippocampi revealed dysregulation of genes involved in myelination, action potential, membrane-bound vesicles and motor behaviour. In summary, ATP6AP2 disruption in mouse and fly leads to cognitive impairment and neurodegeneration, mimicking aspects of the neuropathology associated with ATP6AP2 mutations in humans. Our results identify ATP6AP2 as an essential gene for the nervous system.


Assuntos
Transtornos Cognitivos/etiologia , Proteínas de Drosophila/genética , Proteínas de Membrana/genética , Degeneração Neural/etiologia , ATPases Translocadoras de Prótons/genética , Receptores de Superfície Celular/genética , Animais , Encéfalo/metabolismo , Encéfalo/fisiopatologia , Transtornos Cognitivos/genética , Transtornos Cognitivos/fisiopatologia , Modelos Animais de Doenças , Drosophila , Feminino , Técnicas de Silenciamento de Genes , Deficiência Intelectual/genética , Masculino , Camundongos , Degeneração Neural/patologia , Neurônios/metabolismo , Neurônios/fisiologia , Neurônios/ultraestrutura , Transtornos Parkinsonianos/genética , Sinapses/metabolismo , Sinapses/fisiologia , Sinapses/ultraestrutura
14.
Science ; 344(6180): 203-7, 2014 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-24652937

RESUMO

Under resting conditions, Pink1 knockout cells and cells derived from patients with PINK1 mutations display a loss of mitochondrial complex I reductive activity, causing a decrease in the mitochondrial membrane potential. Analyzing the phosphoproteome of complex I in liver and brain from Pink1(-/-) mice, we found specific loss of phosphorylation of serine-250 in complex I subunit NdufA10. Phosphorylation of serine-250 was needed for ubiquinone reduction by complex I. Phosphomimetic NdufA10 reversed Pink1 deficits in mouse knockout cells and rescued mitochondrial depolarization and synaptic transmission defects in pink(B9)-null mutant Drosophila. Complex I deficits and adenosine triphosphate synthesis were also rescued in cells derived from PINK1 patients. Thus, this evolutionary conserved pathway may contribute to the pathogenic cascade that eventually leads to Parkinson's disease in patients with PINK1 mutations.


Assuntos
Proteínas de Drosophila/metabolismo , Complexo I de Transporte de Elétrons/metabolismo , NADH Desidrogenase/metabolismo , Doença de Parkinson/enzimologia , Doença de Parkinson/genética , Proteínas Quinases/genética , Sequência de Aminoácidos , Animais , Encéfalo/enzimologia , Humanos , Fígado/enzimologia , Potencial da Membrana Mitocondrial/genética , Camundongos , Camundongos Knockout , Dados de Sequência Molecular , Mutação , Fosforilação/genética , Proteoma , Serina/química , Serina/metabolismo
15.
PLoS One ; 8(11): e81791, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24303071

RESUMO

We recently reported that duplication of the E3 ubiquitin ligase HUWE1 results in intellectual disability (ID) in male patients. However, the underlying molecular mechanism remains unknown. We used Drosophila melanogaster as a model to investigate the effect of increased HUWE1 levels on the developing nervous system. Similar to the observed levels in patients we overexpressed the HUWE1 mRNA about 2-fold in the fly. The development of the mushroom body and neuromuscular junctions were not altered, and basal neurotransmission was unaffected. These data are in agreement with normal learning and memory in the courtship conditioning paradigm. However, a disturbed branching phenotype at the axon terminals of the dorsal cluster neurons (DCN) was detected. Interestingly, overexpression of HUWE1 was found to decrease the protein levels of dishevelled (dsh) by 50%. As dsh as well as Fz2 mutant flies showed the same disturbed DCN branching phenotype, and the constitutive active homolog of ß-catenin, armadillo, could partially rescue this phenotype, our data strongly suggest that increased dosage of HUWE1 compromises the Wnt/ß-catenin pathway possibly by enhancing the degradation of dsh.


Assuntos
Axônios/metabolismo , Deficiência Intelectual/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Via de Sinalização Wnt , Animais , Animais Geneticamente Modificados , Modelos Animais de Doenças , Drosophila , Expressão Gênica , Humanos , Deficiência Intelectual/genética , Deficiência Intelectual/fisiopatologia , Aprendizagem , Memória , Corpos Pedunculados/metabolismo , Corpos Pedunculados/fisiopatologia , Junção Neuromuscular/metabolismo , Neurônios/metabolismo , Transmissão Sináptica , Proteínas Supressoras de Tumor
16.
PLoS One ; 8(11): e78562, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24244323

RESUMO

Mitochondrial electron transport chain (ETC) defects are observed in Parkinson's disease (PD) patients and in PD fly- and mouse-models; however it remains to be tested if acute improvement of ETC function alleviates PD-relevant defects. We tested the hypothesis that 808 nm infrared light that effectively penetrates tissues rescues pink1 mutants. We show that irradiating isolated fly or mouse mitochondria with 808 nm light that is absorbed by ETC-Complex IV acutely improves Complex IV-dependent oxygen consumption and ATP production, a feature that is wavelength-specific. Irradiating Drosophila pink1 mutants using a single dose of 808 nm light results in a rescue of major systemic and mitochondrial defects. Time-course experiments indicate mitochondrial membrane potential defects are rescued prior to mitochondrial morphological defects, also in dopaminergic neurons, suggesting mitochondrial functional defects precede mitochondrial swelling. Thus, our data indicate that improvement of mitochondrial function using infrared light stimulation is a viable strategy to alleviate pink1-related defects.


Assuntos
Trifosfato de Adenosina/metabolismo , Proteínas de Drosophila/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Consumo de Oxigênio , Doença de Parkinson/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Trifosfato de Adenosina/genética , Animais , Modelos Animais de Doenças , Proteínas de Drosophila/genética , Drosophila melanogaster , Complexo IV da Cadeia de Transporte de Elétrons/genética , Humanos , Luz , Camundongos , Doença de Parkinson/genética , Proteínas Serina-Treonina Quinases/genética
17.
PLoS Genet ; 9(4): e1003478, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23637640

RESUMO

The PTEN-induced kinase 1 (PINK1) is a mitochondrial kinase, and pink1 mutations cause early onset Parkinson's disease (PD) in humans. Loss of pink1 in Drosophila leads to defects in mitochondrial function, and genetic data suggest that another PD-related gene product, Parkin, acts with pink1 to regulate the clearance of dysfunctional mitochondria (mitophagy). Consequently, pink1 mutants show an accumulation of morphologically abnormal mitochondria, but it is unclear if other factors are involved in pink1 function in vivo and contribute to the mitochondrial morphological defects seen in specific cell types in pink1 mutants. To explore the molecular mechanisms of pink1 function, we performed a genetic modifier screen in Drosophila and identified aconitase (acon) as a dominant suppressor of pink1. Acon localizes to mitochondria and harbors a labile iron-sulfur [4Fe-4S] cluster that can scavenge superoxide to release hydrogen peroxide and iron that combine to produce hydroxyl radicals. Using Acon enzymatic mutants, and expression of mitoferritin that scavenges free iron, we show that [4Fe-4S] cluster inactivation, as a result of increased superoxide in pink1 mutants, results in oxidative stress and mitochondrial swelling. We show that [4Fe-4S] inactivation acts downstream of pink1 in a pathway that affects mitochondrial morphology, but acts independently of parkin. Thus our data indicate that superoxide-dependent [4Fe-4S] inactivation defines a potential pathogenic cascade that acts independent of mitophagy and links iron toxicity to mitochondrial failure in a PD-relevant model.


Assuntos
Aconitato Hidratase , Drosophila , Animais , Drosophila/genética , Proteínas de Drosophila/genética , Humanos , Ferro/metabolismo , Mitocôndrias/genética , Doença de Parkinson/genética
18.
Neuron ; 77(6): 1097-108, 2013 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-23522045

RESUMO

PI(3,4,5)P3 is a low-abundance lipid thought to play a role in the regulation of synaptic activity; however, the mechanism remains obscure. We have constructed novel split Venus-based probes and used superresolution imaging to localize PI(3,4,5)P3 at Drosophila larval neuromuscular synapses. We find the lipid in membrane domains at neurotransmitter release sites, where it concentrates with Syntaxin1A, a protein essential for vesicle fusion. Reducing PI(3,4,5)P3 availability disperses Syntaxin1A clusters and increasing PI(3,4,5)P3 levels rescues this defect. In artificial giant unilamellar vesicles, PI(3,4,5)P3 also induces Syntaxin1A domain formation and this clustering, in vitro and in vivo, is dependent on positively charged residues in the Syntaxin1A-juxtamembrane domain. Functionally, reduced PI(3,4,5)P3 causes temperature-sensitive paralysis and reduced neurotransmitter release, a phenotype also seen in animals expressing a Syntaxin1A with a mutated juxtamembrane domain. Thus, our data indicate that PI(3,4,5)P3, based on electrostatic interactions, clusters Syntaxin1A at release sites to regulate neurotransmitter release.


Assuntos
Fosfatidilinositóis/metabolismo , Sinapses/metabolismo , Sintaxina 1/metabolismo , Sequência de Aminoácidos , Animais , Animais Geneticamente Modificados , Análise por Conglomerados , Drosophila , Dados de Sequência Molecular , Neurotransmissores/genética , Neurotransmissores/metabolismo , Células PC12 , Fosfatidilinositóis/genética , Ratos , Sinapses/ultraestrutura , Sintaxina 1/genética
19.
Science ; 336(6086): 1306-10, 2012 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-22582012

RESUMO

Human UBIAD1 localizes to mitochondria and converts vitamin K(1) to vitamin K(2). Vitamin K(2) is best known as a cofactor in blood coagulation, but in bacteria it is a membrane-bound electron carrier. Whether vitamin K(2) exerts a similar carrier function in eukaryotic cells is unknown. We identified Drosophila UBIAD1/Heix as a modifier of pink1, a gene mutated in Parkinson's disease that affects mitochondrial function. We found that vitamin K(2) was necessary and sufficient to transfer electrons in Drosophila mitochondria. Heix mutants showed severe mitochondrial defects that were rescued by vitamin K(2), and, similar to ubiquinone, vitamin K(2) transferred electrons in Drosophila mitochondria, resulting in more efficient adenosine triphosphate (ATP) production. Thus, mitochondrial dysfunction was rescued by vitamin K(2) that serves as a mitochondrial electron carrier, helping to maintain normal ATP production.


Assuntos
Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila/metabolismo , Transporte de Elétrons , Mitocôndrias/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Vitamina K 2/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Drosophila/genética , Proteínas de Drosophila/deficiência , Escherichia coli/metabolismo , Voo Animal , Genes de Insetos , Potencial da Membrana Mitocondrial , Mitocôndrias/ultraestrutura , Mitocôndrias Musculares/metabolismo , Mitocôndrias Musculares/ultraestrutura , Mutação , Consumo de Oxigênio , Proteínas Serina-Treonina Quinases/deficiência , Ubiquinona/metabolismo , Ubiquitina-Proteína Ligases/genética , Vitamina K 2/farmacologia
20.
Hum Mol Genet ; 21(12): 2698-712, 2012 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-22398207

RESUMO

Mitochondrial dysfunction is commonly observed in degenerative disorders, including Alzheimer's and Parkinson's disease that are characterized by the progressive and selective loss of neuronal subpopulations. It is currently unclear, however, whether mitochondrial dysfunction is primary or secondary to other pathogenic processes that eventually lead to age-related neurodegeneration. Here we establish an in vivo Drosophila model of mitochondrial dysfunction by downregulating the catalytic subunit of mitochondrial DNA (mtDNA) polymerase in cholinergic, serotonergic and dopaminergic neurons. The resulting flies are characterized by lowered respiratory chain activity, premature aging, age-related motor deficits as well as adult onset, progressive and cell-type-specific, dopaminergic neurodegeneration. Using this model, we find that associated lethality can be partially rescued by targeting PINK1/parkin signaling or Drp1, both of which have been implicated in mitochondrial dynamics and Parkinson's disease. Bypassing mitochondrial complex III/IV deficiencies with Alternative oxidase (AOX), however, fully restores ATP levels and prevents dopaminergic neurodegeneration. In contrast, ATP levels and neurodegeneration are not rescued when mitochondrial complex I deficiencies are bypassed with NADH-Q oxidoreductase. Our results demonstrate that mtDNA-mediated mitochondrial dysfunction can cause age-related and cell-type-specific neurodegeneration which AOX is able to alleviate and indicate that AOX or its surrogates may prove useful as a therapeutic tool for limiting respiratory chain deficiencies caused by mtDNA decline in healthy aging and neurodegenerative disease.


Assuntos
Neurônios Dopaminérgicos/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Oxirredutases/metabolismo , Proteínas de Plantas/metabolismo , Trifosfato de Adenosina/metabolismo , Envelhecimento/genética , Animais , Western Blotting , Proteínas do Citoesqueleto/genética , Proteínas do Citoesqueleto/metabolismo , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , DNA Polimerase Dirigida por DNA/genética , DNA Polimerase Dirigida por DNA/metabolismo , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Transporte de Elétrons/genética , Complexo I de Transporte de Elétrons/deficiência , Complexo I de Transporte de Elétrons/genética , Complexo I de Transporte de Elétrons/metabolismo , Proteínas de Ligação ao GTP/genética , Proteínas de Ligação ao GTP/metabolismo , Humanos , Mitocôndrias/genética , Doenças Mitocondriais/genética , Doenças Mitocondriais/metabolismo , Proteínas Mitocondriais/genética , NADH NADPH Oxirredutases/genética , NADH NADPH Oxirredutases/metabolismo , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/metabolismo , Oxirredutases/genética , Proteínas de Plantas/genética , Interferência de RNA , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA