Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Neurochem ; 153(4): 525-538, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31729763

RESUMO

Following peripheral nerve injury, remnant Schwann cells adopt a migratory phenotype and remodel the extracellular matrix allowing axonal regrowth. Although much evidence has demonstrated that TGF-ß1 promotes glioma cell motility and induces the expression of extracellular matrix proteins, the effects of TGF-ß1 on Schwann cell migration has not yet been studied. We therefore investigated the cellular effects and the signal transduction pathways evoked by TGF-ß1 in rattus norvegicus neuronal Schwann RSC96 cell. TGF-ß1 significantly increased migration and invasion of Schwann cells assessed by the wound-healing assay and by cell invasion assay. TGF-ß1-enhanced migration/invasion was blocked by inhibition of MMP-2 and MMP-9. Consistently, by real-time and western blot analyses, we demonstrated that TGF-ß1 increased MMP-2 and MMP-9 mRNA and protein levels. TGF-ß1 also increased MMPs activities in cell growth medium, as shown by gelatin zymography. The selective TGF-ß Type I receptor inhibitor SB431542 completely abrogated any effects by TGF-ß1. Indeed, TGF-ß1 Type I receptor activation provoked the cytosol-to-nucleus translocation of SMAD2 and SMAD3. SMAD2 knockdown by siRNA blocked MMP-2 induction and cell migration/invasion due to TGF-ß1. TGF-ß1 also provoked phosphorylation of MAPKs extracellular regulated kinase 1/2 and JNK1/2. Both MAPKs were upstream to p65/NF-kB inasmuch as both MAPKs' inhibitors PD98059 and SP600125 or their down-regulation by siRNA significantly blocked the TGF-ß1-induced nuclear translocation of p65/NF-kB. In addition, p65/NF-κB siRNA knockdown inhibited the effects of TGF-ß1 on both MMP-9 and cell migration/invasion. We conclude that TGF-ß1 controls RSC96 Schwann cell migration and invasion through MMP-2 and MMP-9 activities. MMP-2 is controlled by SMAD2 whilst MMP-9 is controlled via an ERK1/2-JNK1/2-NF-κB dependent pathway.


Assuntos
Movimento Celular/fisiologia , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Células de Schwann/enzimologia , Fator de Crescimento Transformador beta1/farmacologia , Animais , Linhagem Celular , Movimento Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ratos , Células de Schwann/efeitos dos fármacos
2.
Biomolecules ; 9(3)2019 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-30845773

RESUMO

We have demonstrated the cytotoxic effects of [Pt(O,O'-acac)(γ-acac)(dimethyl sulfide (DMS))] on various immortalized cell lines, in primary cultures, and in murine xenograft models in vivo. Recently, we also showed that [Pt(O,O'-acac)(γ-acac)(DMS)] is able to kill Caki-1 renal cells both in vivo and in vitro. In the present paper, apoptotic and autophagic effects of [Pt(O,O'-acac)(γ-acac)(DMS)] and cisplatin were studied and compared using Caki-1 cancerous renal cells. The effects of cisplatin include activation of caspases, proteolysis of enzyme poly ADP ribose polymerase (PARP), control of apoptosis modulators B-cell lymphoma 2 (Bcl-2), Bcl-2-associated X protein (Bax), and BH3-interacting domain death agonist (Bid), and cell cycle arrest in G2/M phase. Conversely, [Pt(O,O'-acac)(γ-acac)(DMS)] did not induce caspase activation, nor chromatin condensation or DNA fragmentation. The effects of [Pt(O,O'-acac)(γ-acac)(DMS)] include microtubule-associated proteins 1A/1B light chain 3B (LC3)-I to LC3-II conversion, Beclin-1 and Atg-3, -4, and -5 increase, Bcl-2 decrease, and monodansylcadaverine accumulation in autophagic vacuoles. [Pt(O,O'-acac)(γ-acac)(DMS)] also modulated various kinases involved in intracellular transduction regulating cell fate. [Pt(O,O'-acac)(γ-acac)(DMS)] inhibited the phosphorylation of mammalian target of rapmycin (mTOR), p70S6K, and AKT, and increased the phosphorylation of c-Jun N-terminal kinase (JNK1/2), a kinase activity pattern consistent with autophagy induction. In conclusion, while in past reports the high cytotoxicity of [Pt(O,O'-acac)(γ-acac)(DMS)] was always attributed to its ability to trigger an apoptotic process, in this paper we show that Caki-1 cells die as a result of the induction of a strong autophagic process.


Assuntos
Antineoplásicos/farmacologia , Autofagia/efeitos dos fármacos , Carcinoma de Células Renais/tratamento farmacológico , Compostos Organoplatínicos/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Carcinoma de Células Renais/patologia , Ciclo Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Compostos Organoplatínicos/síntese química , Compostos Organoplatínicos/química , Relação Estrutura-Atividade , Células Tumorais Cultivadas
3.
Am J Physiol Cell Physiol ; 316(2): C235-C245, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30485136

RESUMO

Carnosine (CAR) is an endogenous dipeptide physiologically present in excitable tissues, such as central nervous system (CNS) and muscle. CAR is acknowledged as a substrate involved in many homeostatic pathways and mechanisms and, due to its biochemical properties, as a molecule intertwined with the homeostasis of heavy metals such as copper (Cu). In CNS, Cu excess and dysregulation imply oxidative stress, free-radical production, and functional impairment leading to neurodegeneration. Here, we report that CAR intercepts the regulatory routes of Cu homeostasis in nervous cells and tissues. Specifically, in a murine neuron-derived cell model, i.e., the B104 neuroblastoma cells, extracellular CAR exposure up to 24 h influenced intracellular Cu entry and affected (downregulated) the key Cu-sensing system, consisting of the gene coding for the Slc31a1 transmembrane Cu importer (alias Ctr1), and the gene coding for the Cu-responsive transcription factor Sp1 ( Sp1). Also, CAR exposure upregulated CAR biosynthesis ( Carns1), extracellular degradation ( Cndp1), and transport ( Slc15a4, alias Pht1) genes and elicited CAR intracellular accumulation, contributing to the outline of functional association between CAR and Cu within the cell. Interestingly, the same gene modulation scheme acting in vitro operates in vivo in brains of mice undergoing dietary administration of CAR in drinking water for 2 wk. Overall, our findings describe for the first time a regulatory interaction between CAR and Cu pathways in CNS and indicate CAR as a novel active molecule within the network of ligands and chaperones that physiologically regulate Cu homeostasis.


Assuntos
Encéfalo/metabolismo , Carnosina/farmacologia , Proteínas de Transporte de Cátions/metabolismo , Cobre/metabolismo , Fator de Transcrição Sp1/metabolismo , Animais , Encéfalo/citologia , Encéfalo/efeitos dos fármacos , Células Cultivadas , Transportador de Cobre 1 , Relação Dose-Resposta a Droga , Homeostase/efeitos dos fármacos , Homeostase/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C
4.
J Cell Physiol ; 234(4): 4409-4417, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30144378

RESUMO

Malignant pleural mesothelioma (MPM) is an aggressive malignant tumor in which cisplatin therapy is commonly used, although its effectiveness is limited. It follows that research efforts dedicated to identify promising combinations that can synergistically kill cancer cells are needed. Because we recently demonstrated that ADP inhibits the proliferation of ZL55 cells, an MPM-derived cell line obtained from bioptic samples of asbestos-exposed patients. Our objective in this study was to investigate the hypothesis that ADP also potentiates the cytotoxic activity of cisplatin. Results show that in ZL55 cells ADP enhanced (a) the cytotoxicity of cisplatin by 12-fold, (b) the restraint of cell clonogenic potential cisplatin-mediated, and (c) the number of apoptotic cells. Cisplatin, but not ADP, caused caspases activation; nevertheless, poly(ADP-ribose) polymerase-1 was not only cleaved in cisplatin-treated cells but also in cells treated with ADP alone. Furthermore, ADP, but not cisplatin, decreased mTOR and 6SK phosphorylations. Both ADP and cisplatin increased p53 protein, but ADP was also able to enhance p53 messenger RNA. P53 silencing resulted in a very large decrement of cell death induced by ADP or by cisplatin and reverted ADP effects on mTOR/S6K phosphorylation, suggesting that activated p53 may act as a negative regulator of mTOR. Consistently, the inhibition of mTOR by rapamycin also sensitized cells to cisplatin, and the effects of cisplatin plus rapamycin were identical to those obtained with cisplatin plus ADP. These findings suggest that the combination of ADP and cisplatin may be a promising strategy for the clinical treatment of cisplatin-resistant MPM.


Assuntos
Trifosfato de Adenosina/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Proliferação de Células/efeitos dos fármacos , Cisplatino/farmacologia , Neoplasias Pulmonares/tratamento farmacológico , Mesotelioma/tratamento farmacológico , Apoptose/efeitos dos fármacos , Caspases/metabolismo , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Resistencia a Medicamentos Antineoplásicos , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Mesotelioma/genética , Mesotelioma/metabolismo , Mesotelioma/patologia , Mesotelioma Maligno , Fosforilação , Poli(ADP-Ribose) Polimerase-1/metabolismo , Proteínas Quinases S6 Ribossômicas/metabolismo , Transdução de Sinais , Sirolimo/farmacologia , Serina-Treonina Quinases TOR/antagonistas & inibidores , Serina-Treonina Quinases TOR/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
5.
Ann N Y Acad Sci ; 1431(1): 72-84, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-29984433

RESUMO

Although an association between cancer progression and matrix metalloproteinase (MMP) 2 and MPP9 expression has been known, the expression, nuclear localization, and physiologically controlled activation of these two MMPs have not been investigated in malignant mesothelioma cells. We examined the expression and intracellular localization of MMP2/9 in ZL55 malignant mesothelioma cells, as well as their regulation by ADP. Using real-time PCR, we showed that activation of the P2Y1 receptor by ADP increased the expression of MMP2/9 mRNAs; MMP2/9 collected from conditioned media also showed an increase in activity; and ADP induced the nuclear localization of MMP2/9. The effects of ADP on transcription of the MMPs were due to activation of c-Src, Akt, and NF-κB, while ERK1/2 phosphorylation was needed for the increase in enzymatic activity and the regulation of nuclear import. We also showed that the nuclear localization of MMP2/9 induced by ADP causes the cleavage and inactivation of poly-ADP-ribose polymerase-1. These findings may help to elucidate the mechanisms regulating MMP2/9 activation in ZL55 human epithelioid mesothelioma cells, and perhaps other cells. Therapeutic approaches that promote ADP accumulation in a tumor environment may constitute an effective means to induce anticancer activity.


Assuntos
Difosfato de Adenosina/farmacologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Neoplasias Pulmonares/metabolismo , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Mesotelioma/metabolismo , Linhagem Celular Tumoral , Genes src/fisiologia , Humanos , Mesotelioma Maligno , NF-kappa B/metabolismo , Fosforilação/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia
7.
J Cell Physiol ; 233(3): 2526-2536, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28777435

RESUMO

Extracellular nucleotides can regulate cell proliferation in both normal and tumorigenic tissues. Here, we studied how extracellular nucleotides regulate the proliferation of ZL55 cells, a mesothelioma-derived cell line obtained from bioptic samples of asbestos-exposed patients. ADP and 2-MeS-ADP inhibited ZL55 cell proliferation, whereas ATP, UTP, and UDP were inactive. The nucleotide potency profile and the blockade of the ADP-mediated inhibitory effect by the phospholipase C inhibitor U-73122 suggest that P2Y1 receptor controls ZL55 cell proliferation. The activation of P2Y1 receptor by ADP leads to activation of intracellular transduction pathways involving [Ca2+ ]i , PKC-δ/PKC-α, and MAPKs, ERK1/2 and JNK1/2. Cell treatment with ADP or 2-MeS-ADP also provokes the activation of p53, causing an accumulation of the G1 cyclin-dependent kinase inhibitors p21WAF1 and p27Kip . Inhibition of ZL55 cell proliferation by ADP was completely reversed by inhibiting MEK1/2, or JNK1/2, or PKC-δ, and PKC-α. Through the inhibition of ADP-activated transductional kinases it was found that PKC-δ was responsible for JNK1/2 activation. JNK1/2 has a role in transcriptional up-regulation of p53, p21WAF1/CIP1 , and p27kip1 . Conversely, the ADP-activated PKC-α provoked ERK1/2 phosphorylation. ERK1/2 increased p53 stabilization, required to G1 arrest of ZL55 cells. Concluding, the importance of the study is twofold: first, results shed light on the mechanism of cell cycle inhibition by ADP; second, results suggest that extracellular ADP may inhibit mesothelioma progression.


Assuntos
Difosfato de Adenosina/farmacologia , Antineoplásicos/farmacologia , Proliferação de Células/efeitos dos fármacos , Mesotelioma/tratamento farmacológico , Proteína Quinase C-alfa/metabolismo , Proteína Quinase C-delta/metabolismo , Agonistas do Receptor Purinérgico P2Y/farmacologia , Receptores Purinérgicos P2Y1/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Difosfato de Adenosina/análogos & derivados , Amianto/efeitos adversos , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Ativação Enzimática , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Humanos , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Mesotelioma/enzimologia , Mesotelioma/genética , Mesotelioma/patologia , Fosforilação , Proteína Quinase C-alfa/genética , Proteína Quinase C-delta/genética , Estabilidade Proteica , Interferência de RNA , Receptores Purinérgicos P2Y1/metabolismo , Tionucleotídeos/farmacologia , Fatores de Tempo , Transfecção , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
8.
PLoS One ; 12(7): e0181114, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28704484

RESUMO

Mesothelioma cancer cells have epithelioid or sarcomatoid morphology. The worst prognosis is associated with sarcomatoid phenotype and resistance to therapy is affected by cells heterogeneity. We recently showed that in ZL55 mesothelioma cell line of epithelioid origin [Pt(O,O'-acac)(γ-acac)(DMS)] (Ptac2S) has an antiproliferative effect in vitro and in vivo. Aim of this work was to extend the study on the effects of Ptac2S on ZL34 cell line, representative of sarcomatoid mesothelioma. ZL34 cells were used to assay the antitumor activity of Ptac2S in a mouse xenograft model in vivo. Then, both ZL34 and ZL55 cells were used in order to assess the involvement of p53 protein in (a) the processes underlying the sensitivity to chemotherapy and (b) the activation of various transduction proteins involved in apoptosis/survival processes. Ptac2S increases ZL34 cell death in vivo compared with cisplatin and, in vitro, Ptac2S was more efficacious than cisplatin in inducing apoptosis. In Ptac2S-treated ZL34 and ZL55 cells, p53 regulated gene products of apoptotic BAX and anti-apoptotic Bcl-2 proteins via transcriptional activation. Ptac2S activated PKC-δ and PKC-ε; their inhibition by PKC-siRNA decreased the apoptotic death of cells. PKC-δ was responsible for JNK1/2 activation that has a role in p53 activation. In addition, PKC-ε activation provoked phosphorylation of p38MAPK, concurring to apoptosis. In ZL34 cells, Ptac2S also activated PKC-α thus provoking ERK1/2 activation; inhibition of PKC-α, or ERK1/2, increased Ptac2S cytotoxicity. Results confirm that Ptac2S is a promising therapeutic agent for malignant mesothelioma, giving a substantial starting point for its further validation.


Assuntos
Antineoplásicos/uso terapêutico , Apoptose/efeitos dos fármacos , Neoplasias Pulmonares/tratamento farmacológico , Mesotelioma/tratamento farmacológico , Compostos Organoplatínicos/uso terapêutico , Proteína Quinase C-delta/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Animais , Antineoplásicos/farmacologia , Antineoplásicos/toxicidade , Linhagem Celular Tumoral , Humanos , Neoplasias Pulmonares/metabolismo , Mesotelioma/metabolismo , Mesotelioma Maligno , Camundongos , Camundongos Nus , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Compostos Organoplatínicos/farmacologia , Compostos Organoplatínicos/toxicidade , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
9.
Mol Carcinog ; 56(11): 2461-2473, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28618084

RESUMO

The relation between the tumor and its microenvironment is one of the most interesting and less understood issues. Recently, we showed a role of CCL20 chemokine in proning the healthy tissue neighboring the tumor to carcinogenesis. Besides, tumor-secreted CCL20 induced proliferation, migration, and EMT of healthy cells. In this context, we have studied here if CCL20 had effects on the migration of cancer cells and the intracellular pathways used in breast epithelial cells in primary culture. Using molecular (siRNA) and pharmacological (inhibitors) techniques, we found multiple signaling kinases to be activated and involved in CCL20-induced tumor breast cell migration. CCL20 provoked a 2.5-fold increase of cell migration and invasion; CCL20 also enhanced MMP- 2 and MMP-9 mRNAs/protein expression and activities. Cell migration and invasiveness due to CCL20 significantly decreased when MMP-2 and MMP-9 were inhibited in CCL20-stimulated cells. CCL20 controlled MMP-2 expression through the JAK2/STAT3 pathway, while the expression of MMP-9 occurred by PKC-α that activated, consequently, c-Src, Akt, and finally NF-kB. These results reveal a role for CCL20 also in tumor breast cell and point to CCL20 as a novel therapeutic target in cancer.


Assuntos
Neoplasias da Mama/patologia , Mama/patologia , Movimento Celular , Quimiocina CCL20/genética , Células Epiteliais/patologia , Regulação Neoplásica da Expressão Gênica , Mama/metabolismo , Neoplasias da Mama/genética , Neoplasias da Mama/imunologia , Proteína Tirosina Quinase CSK , Linhagem Celular Tumoral , Quimiocina CCL20/imunologia , Células Epiteliais/imunologia , Células Epiteliais/metabolismo , Feminino , Humanos , Metaloproteinase 2 da Matriz/genética , Metaloproteinase 2 da Matriz/imunologia , Metaloproteinase 9 da Matriz/genética , Metaloproteinase 9 da Matriz/imunologia , NF-kappa B/imunologia , Invasividade Neoplásica/genética , Invasividade Neoplásica/patologia , Proteínas Proto-Oncogênicas c-akt/imunologia , Transdução de Sinais , Células Tumorais Cultivadas , Quinases da Família src/imunologia
10.
PLoS One ; 11(11): e0165154, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27806086

RESUMO

Malignant pleural mesothelioma (MPM) is an aggressive malignancy highly resistant to chemotherapy. There is an urgent need for effective therapy inasmuch as resistance, intrinsic and acquired, to conventional therapies is common. Among Pt(II) antitumor drugs, [Pt(O,O'-acac)(γ-acac)(DMS)] (Ptac2S) has recently attracted considerable attention due to its strong in vitro and in vivo antiproliferative activity and reduced toxicity. The purpose of this study was to examine the efficacy of Ptac2S treatment in MPM. We employed the ZL55 human mesothelioma cell line in vitro and in a murine xenograft model in vivo, to test the antitumor activity of Ptac2S. Cytotoxicity assays and Western blottings of different apoptosis and survival proteins were thus performed. Ptac2S increases MPM cell death in vitro and in vivo compared with cisplatin. Ptac2S was more efficacious than cisplatin also in inducing apoptosis characterized by: (a) mitochondria depolarization, (b) increase of bax expression and its cytosol-to-mitochondria translocation and decrease of Bcl-2 expression, (c) activation of caspase-7 and -9. Ptac2S activated full-length PKC-δ and generated a PKC-δ fragment. Full-length PKC-δ translocated to the nucleus and membrane, whilst PKC-δ fragment concentrated to mitochondria. Ptac2S was also responsible for the PKC-ε activation that provoked phosphorylation of p38. Both PKC-δ and PKC-ε inhibition (by PKC-siRNA) reduced the apoptotic death of ZL55 cells. Altogether, our results confirm that Ptac2S is a promising therapeutic agent for malignant mesothelioma, providing a solid starting point for its validation as a suitable candidate for further pharmacological testing.


Assuntos
Antineoplásicos/farmacologia , Neoplasias Pulmonares/patologia , Mesotelioma/patologia , Compostos Organoplatínicos/farmacologia , Neoplasias Pleurais/metabolismo , Neoplasias Pleurais/patologia , Animais , Apoptose/efeitos dos fármacos , Caspases/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Citocromos c/metabolismo , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Feminino , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mesotelioma/tratamento farmacológico , Mesotelioma Maligno , Camundongos , Fosforilação , Neoplasias Pleurais/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia , Proteólise , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Transdução de Sinais/efeitos dos fármacos , Carga Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto , Proteína X Associada a bcl-2/metabolismo
11.
Biochem Pharmacol ; 98(1): 29-40, 2015 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-26300055

RESUMO

Cisplatin is commonly employed in therapy of mesothelioma but its efficacy is limited and the mechanisms by which induces its effects are not clearly understood. PKCs can regulate cisplatin sensitivity. PKCs effects on cellular sensitivity/resistance depend on the pattern of active PKC isozymes as well as on cellular context. The present study was undertaken to determine if specific PKC isoforms regulate cisplatin-induced apoptosis in the human mesothelioma ZL55 cells. Cells were treated with cisplatin at various concentrations and for different incubation periods. Cytotoxicity assays and Western blottings of various proteins involved in apoptosis and survival were then performed. Exposure of ZL55 cells to cisplatin at concentrations ranging from 1 to 200 µM resulted in a dose-dependent inhibition of cell survival and the activation of the mitochondrial apoptotic pathway. Cisplatin activated full-length PKC-δ and generated a PKC-δ fragment. PKC-δ inhibition (by PKC-δ-siRNA) decreased ZL55 cell apoptosis. Full-length PKC-δ translocated to the nucleus and activated caspase-3 expression, whereas PKC-δ fragment preferentially localized to mitochondria. Cisplatin also provoked the generation of reactive oxygen species (ROS) by NADPH oxidase. ROS increment was responsible for the PKC-α activation that provoked EGFR transactivation and consequential phosphorylation of ERK1/2. The inhibition of this pathway at various level (PKC-α, EGFR or ERK1/2) increased cisplatin-induced cytotoxicity. The results suggest that PKC-δ is an essential part of the apoptotic program in mesothelioma cells, whereas PKC-α mediates a pro-survival response to cisplatin.


Assuntos
Antineoplásicos/farmacologia , Cisplatino/farmacologia , Ativação Enzimática/efeitos dos fármacos , Proteína Quinase C-alfa/metabolismo , Proteína Quinase C-delta/metabolismo , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Cisplatino/uso terapêutico , MAP Quinases Reguladas por Sinal Extracelular/genética , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mesotelioma/tratamento farmacológico , Espécies Reativas de Oxigênio
12.
PLoS One ; 9(11): e112186, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25372487

RESUMO

We previously showed that [Pt(O,O'-acac)(γ-acac)(DMS)] ([Pt(acac)2(DMS)]) exerted substantial cytotoxic effects in SH-SY5Y neuroblastoma cells, and decreased metalloproteases (MMPs) production and cells migration in MCF-7 breast cancer cells. The ubiquitously distributed sodium-hydrogen antiporter 1 (NHE1) is involved in motility and invasion of many solid tumours. The present study focuses on the effects of [Pt(acac)2(DMS)] in SH-SY5Y cell migration and also on the possibility that NHE1 may be involved in such effect. After sublethal [Pt(acac)2(DMS)] treatment cell migration was examined by wounding assay and cell invasion by transwell assay. NHE1 activity was measured in BCECF-loaded SH-SY5Y as the rate of Na+-dependent intracellular pH recovery in response to an acute acid pulse. Gelatin zymography for MMP-2/9 activities, Western blottings of MMPs, MAPKs, mTOR, S6 and PKCs and small interfering RNAs to PKC-ε/-δ mRNA were performed. Sublethal concentrations of [Pt(acac)2(DMS)] decreases NHE1 activity, inhibits cell migration and invasion and decreases expression and activity of MMP-2 and -9. [Pt(acac)2(DMS)] administered to SH-SY5Y cells provokes the increment of ROS, generated by NADPH oxidase, responsible for the PKC-ε and PKC-δ activation. Whilst PKC-δ activates p38/MAPK, responsible for the inhibition of MMP-2 and -9 secretion, PKC-ε activates a pathway made of ERK1/2, mTOR and S6K responsible for the inhibition of NHE1 activity and cell migration. In conclusion, we have shown a drastic impairment in tumour cell metastatization in response to inhibition of NHE1 and MMPs activities by [Pt(acac)2(DMS)] occurring through a novel mechanism mediated by PKC-δ/-ε activation.


Assuntos
Proteínas de Transporte de Cátions/metabolismo , Movimento Celular/efeitos dos fármacos , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Proteínas de Neoplasias/metabolismo , Neuroblastoma/metabolismo , Compostos de Platina/farmacologia , Proteína Quinase C-épsilon/metabolismo , Trocadores de Sódio-Hidrogênio/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Proteínas de Transporte de Cátions/genética , Linhagem Celular Tumoral , MAP Quinases Reguladas por Sinal Extracelular/genética , Humanos , Sistema de Sinalização das MAP Quinases/genética , Invasividade Neoplásica/genética , Invasividade Neoplásica/patologia , Proteínas de Neoplasias/genética , Neuroblastoma/genética , Neuroblastoma/patologia , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteína Quinase C-épsilon/genética , Trocador 1 de Sódio-Hidrogênio , Trocadores de Sódio-Hidrogênio/genética , Serina-Treonina Quinases TOR/genética
13.
Br J Pharmacol ; 171(22): 5139-53, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24990093

RESUMO

BACKGROUND AND PURPOSE: The aim of this study was to determine whether [platinum (Pt)(O,O'-acetylacetonate (acac))(γ-acac)(dimethylsulphide (DMS))] is differentially cytotoxic in normal and cancer cells, and to measure comparative levels of cytotoxicity compared with cisplatin in the same cells. EXPERIMENTAL APPROACH: We performed experiments on cancerous and normal epithelial breast cells in primary culture obtained from the same patients. The apoptotic effects [Pt(O,O'-acac)(γ-acac)(DMS)] and cisplatin in cancerous and normal breast cells were compared. KEY RESULTS: Cancer cells were more sensitive to [Pt(O,O'-acac)(γ-acac)(DMS)] (IC50 = 5.22 ± 1.2 µmol·L(-1)) than normal cells (IC50 = 116.9 ± 8.8 µmol·L(-1)). However, the difference was less strong when cisplatin was used (IC50 = 96.0 ± 6.9 and 61.9 ± 6.1 µmol·L(-1) for cancer and normal cells respectively). Both compounds caused reactive oxygen species (ROS) production with different mechanisms: [Pt(O,O'-acac)(γ-acac)(DMS)] quickly activated NAD(P)H oxidase while cisplatin caused a slower formation of mitochondrial ROS. Cisplatin and [Pt(O,O'-acac)(γ-acac)(DMS)] caused activation of caspases, proteolysis of PARP and modulation of Bcl-2, Bax and Bid. [Pt(O,O'-acac)(γ-acac)(DMS)] also caused leakage of cytochrome c from the mitochondria. Overall, these processes proceeded more quickly in cells treated with [Pt(O,O'-acac)(γ-acac)(DMS)] compared with cisplatin. [Pt(O,O'-acac)(γ-acac)(DMS)] effects were faster and quantitatively greater in cancer than in normal cells. [Pt(O,O'-acac)(γ-acac)(DMS)] caused a fast decrease of mitochondrial membrane potential, especially in cancer cells. CONCLUSIONS AND IMPLICATIONS: [Pt(O,O'-acac)(γ-acac)(DMS)] was specific to breast cancer cells in primary culture, and this observation makes this compound potentially more interesting than cisplatin.


Assuntos
Antineoplásicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Carcinoma Ductal de Mama/tratamento farmacológico , Cisplatino/farmacologia , Células Epiteliais/efeitos dos fármacos , Compostos Organoplatínicos/farmacologia , Antineoplásicos/farmacocinética , Apoptose/efeitos dos fármacos , Mama/citologia , Neoplasias da Mama/metabolismo , Carcinoma Ductal de Mama/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Cisplatino/farmacocinética , Células Epiteliais/metabolismo , Feminino , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Compostos Organoplatínicos/farmacocinética , Platina/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Células Tumorais Cultivadas , Proteína X Associada a bcl-2/metabolismo
14.
J Cell Physiol ; 228(9): 1873-83, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23460117

RESUMO

The communication between the tumor cells and the surrounding cells helps drive the process of tumor progression. Since the microenvironment of breast cancer includes CCL20 chemokine, the purpose of this study was to determine whether CCL20 modulates the physiology of healthy breast epithelial cells in areas adjacent to the tumor. Therefore, primary cultures of mammary cells taken from normal peritumoral areas were used. We assessed that breast cells expressed CCR6 CCL20 receptor. Using molecular (siRNA) and pharmacological (inhibitors) techniques, we found multiple signaling kinases to be activated by CCR6 and involved in CCL20-induced breast cell proliferation and migration. The binding of 10 ng/ml CCL20 to CCR6 induced cell migration whilst higher concentrations (from 15 to 25 ng/ml) led to cell proliferation. CCL20 controlled cell migration and MMP-9 expression by PKC-alpha that activated Src, which caused the activation of downstream Akt, JNK, and NF-kB pathways. Furthermore, higher CCL20 concentrations increased cycE and decreased p27Kip expression ending in enhanced cell proliferation. Cell proliferation occurred through PKC-epsilon activation that transactivated EGFR and ERK1/2/MAPK pathway. Although activated by different CCL20 concentrations, these pathways function in parallel and crosstalk to some extent, inasmuch as Akt activation was responsible for ERK1/2 nuclear translocation and enhanced the transcription of of c-fos and c-myc, involved in cell proliferation. In summary, tumor cells exchange signals with the surrounding healthy cells modifying the extracellular matrix through enzyme secretion; thus, CCL20 might be a factor involved in the ontogeny of breast carcinoma.


Assuntos
Neoplasias da Mama/genética , Movimento Celular/genética , Quimiocina CCL20/genética , Células Epiteliais/patologia , Mama/citologia , Mama/crescimento & desenvolvimento , Mama/metabolismo , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Proliferação de Células , Células Cultivadas , Quimiocina CCL20/metabolismo , Células Epiteliais/metabolismo , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Microambiente Tumoral
15.
Biochem Pharmacol ; 81(11): 1271-85, 2011 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-21420390

RESUMO

It was previously shown that [Pt(O,O'-acac)(γ-acac)(DMS)] induces apoptosis in various cancer cells and exerts antimetastatic responses in vitro. In rats, [Pt(O,O'-acac)(γ-acac)(DMS)] reaches the central nervous system in quantities higher than cisplatin causing less excitotoxicity. The aim of the present paper was to investigate whether [Pt(O,O'-acac)(γ-acac)(DMS)] is able to exert cytotoxic effects on SH-SY5Y human neuroblastoma cell line, and to study the intracellular transduction mechanisms underlying these effects. Here we have demonstrated that [Pt(O,O'-acac)(γ-acac)(DMS)] was more effective than cisplatin in provoking apoptosis characterized by: (a) mitochondria depolarization, (b) decrease of Bcl-2 expression and increase of BAX expressions with cytosol-to-mitochondria translocation, (c) activation of caspase-7 and -9 and (d) generation of reactive oxygen species (ROS). [Pt(O,O'-acac)(γ-acac)(DMS)] provoked the activation of the following signalling kinases that were interacting with each other: PKC-δ and -ɛ, ERK1/2, p38MAPK, JNK1/2, NF-κB, c-src and FAK. We found that ROS generated by NADPH oxidase was responsible for the [Pt(O,O'-acac)(γ-acac)(DMS)]-mediated PKC-δ and -ɛ activation and consequential phosphorylation of all MAPKs. [Pt(O,O'-acac)(γ-acac)(DMS)]-induced mitochondrial apoptosis was blocked when p38MAPK and JNK1/2 were inhibited, whilst the effects on Bax/Bcl-2 mRNA and protein levels were blocked inhibiting NF-κB. NF-κB nuclear translocation was blocked inhibiting MEK1/2 activity. In addition to the induction of apoptosis [Pt(O,O'-acac)(γ-acac)(DMS)] downregulated pro-survival pathway. Survival inhibition started from mitochondrial ROS generation which induced c-src, FAK and Akt activation. In conclusion, our results suggest that [Pt(O,O'-acac)(γ-acac)(DMS)] may be considered a promising compound for the treatment of neuroblastoma. Further studies are warranted to explore in detail the therapeutic potential of this compound.


Assuntos
Apoptose/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Compostos Organoplatínicos/farmacologia , Transdução de Sinais , Animais , Western Blotting , Linhagem Celular Tumoral , Citocromos c/metabolismo , Humanos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/enzimologia , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Neuroblastoma/patologia , Fosforilação , Ratos , Espécies Reativas de Oxigênio/metabolismo
16.
Biochem Pharmacol ; 81(1): 91-103, 2011 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-20854797

RESUMO

It was previously demonstrated that [Pt(O,O'-acac)(γ-acac)(DMS)] exerted toxic effects at high doses, whilst sub-cytotoxic concentrations induced anoikis and decreased cell migration. Aim of this study was to investigate the hypothesis that [Pt(O,O'-acac)(γ-acac)(DMS)] alters the [Ca(2+)](i) and that this is linked to its ability to trigger rapid apoptosis in MCF-7 cells. Thus, cells were treated with [Pt(O,O'-acac)(γ-acac)(DMS)] and its effects on some of the systems regulating Ca(2+) homeostasis were studied, also in cells dealing with the complex changes occurring during the Ca(2+) signalling evoked by extracellular stimuli. [Pt(O,O'-acac)(γ-acac)(DMS)] caused the decrease of PMCA activity (but not SERCA or SPCA) and Ca(2+) membrane permeability. These two opposite effects on [Ca(2+)](i) resulted in its overall increase from 102±12nM to 250±24nM after 15min incubation. The effects of [Pt(O,O'-acac)(γ-acac)(DMS)] were also evident when cells were stimulated with ATP: the changes in Ca(2+) levels caused by purinergic stimulation resulted altered due to decreased PMCA activity and to the closure of Ca(2+) channels opened by purinergic receptor. Conversely, [Pt(O,O'-acac)(γ-acac)(DMS)] did not affect the store-operated Ca(2+) channels opened by thapsigargin or by ATP. [Pt(O,O'-acac)(γ-acac)(DMS)] provoked the activation of PKC-α and the production of ROS that were responsible for the Ca(2+) permeability and PMCA activity decrease, respectively. The overall effect of [Pt(O,O'-acac)(γ-acac)(DMS)] is to increase the [Ca(2+)](i), an effect that is likely to be linked to its ability to trigger rapid apoptosis in MCF-7 cells. These data reinforce the notion that [Pt(O,O'-acac)(γ-acac)(DMS)] would be a promising drug in cancer treatment.


Assuntos
Antineoplásicos/farmacologia , Neoplasias da Mama/metabolismo , Cálcio/metabolismo , Homeostase/efeitos dos fármacos , Compostos Organoplatínicos/farmacologia , Antineoplásicos/administração & dosagem , Linhagem Celular Tumoral , Membrana Celular/efeitos dos fármacos , Permeabilidade da Membrana Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Feminino , Humanos , Lantânio/administração & dosagem , Lantânio/farmacologia , Compostos Organoplatínicos/administração & dosagem , ATPases Transportadoras de Cálcio da Membrana Plasmática/antagonistas & inibidores , Proteína Quinase C-alfa/metabolismo , Trocador de Sódio e Cálcio/metabolismo
17.
Br J Pharmacol ; 160(6): 1362-77, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20590627

RESUMO

BACKGROUND AND PURPOSE: We showed previously that a new Pt(II) complex ([Pt(O,O'-acac)(gamma-acac)(DMS)]) exerted high and fast apoptotic processes in MCF-7 cells. The objective of this study was to investigate the hypothesis that [Pt(O,O'-acac)(gamma-acac)(DMS)] is also able to exert anoikis and alter the migration ability of MCF-7 cells, and to show some of the signalling events leading to these alterations. EXPERIMENTAL APPROACH: Cells were treated with sublethal doses of [Pt(O,O'-acac)(gamma-acac)(DMS)], and the efficiency of colony initiation and anchorage-independent growth was assayed; cell migration was examined by in vitro culture wounding assay. Gelatin zymography for MMP-2 and -9 activities, Western blottings of MMPs, MAPKs, Src, PKC-epsilon and FAK, after [Pt(O,O'-acac)(gamma-acac)(DMS)] treatment, were also performed. KEY RESULTS: Sub-cytotoxic drug concentrations decreased the: (i) anchorage-dependent and -independent growth; (ii) migration ability; and (iii) expression and activity of MMP-2 and MMP-9. [Pt(O,O'-acac)(gamma-acac)(DMS)] provoked the generation of reactive oxygen species (ROS), and the activation of p38MAPK, Src and PKC-epsilon. p38MAPK phosphorylation, cell anoikis and migration due to [Pt(O,O'-acac)(gamma-acac)(DMS)] were blocked by PKC-epsilon inhibition. Furthermore, Src inhibition blocked the [Pt(O,O'-acac)(gamma-acac)(DMS)]-provoked activation of PKC-epsilon, while ROS generation blockage inhibited the activation of Src, and also the decrement of phosphorylated FAK observed in detached [Pt(O,O'-acac)(gamma-acac)(DMS)]-treated cells. CONCLUSIONS AND IMPLICATIONS: Sublethal concentrations of [Pt(O,O'-acac)(gamma-acac)(DMS)] induced anoikis and prevented events leading to metastasis via alterations in cell migration, anchorage independency, stromal interactions and MMP activity. Hence, [Pt(O,O'-acac)(gamma-acac)(DMS)] may be a promising therapeutic agent for preventing growth and metastasis of breast cancer.


Assuntos
Anoikis/efeitos dos fármacos , Antineoplásicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Compostos Organoplatínicos/farmacologia , Antineoplásicos/administração & dosagem , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Feminino , Humanos , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Metástase Neoplásica/prevenção & controle , Compostos Organoplatínicos/administração & dosagem , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos
18.
Br J Pharmacol ; 156(5): 751-63, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19254279

RESUMO

BACKGROUND AND PURPOSE: We showed previously that cisplatin inititates a signalling pathway mediated by PKC-delta/extracellular signal-regulated kinase (ERK), important for maintaining viability in PC Cl3 thyroid cells. The studies described herein examined whether c-fos was associated with cisplatin resistance and the signalling link between c-fos and PKC-delta/ERK. EXPERIMENTAL APPROACH: Cells were treated with various pharmacological inhibitors of PKCs and ERK, or were depleted of c-fos, PKC-delta, PKC-epsilon and caspase-3 by small interfering RNA (siRNA), then incubated with cisplatin and cytotoxicity assessed. KEY RESULTS: Cisplatin provokes the induction of c-fos and the activation of conventional PKC-beta, and novel PKC-delta and -epsilon. The cisplatin-provoked c-fos induction was decreased by Gö6976, a PKC-beta inhibitor; by siRNA for PKC-delta- but not that for PKC-epsilon or by PD98059, a mitogen-activated protein kinase/ERK kinase inhibitor. Expression of c-fos was abolished by GF109203X, an inhibitor of all PKC isoforms, or by PD98059 plus Gö6976 or by PKC-delta-siRNA plus Gö6976. When c-fos expression was blocked by siRNA, cisplatin cytotoxicity was strongly enhanced with increased caspase-3 activation. In PKC-delta-depleted cells treated with cisplatin, caspase-3 activation was increased and cell viability decreased. In these PKC-delta-depleted cells, PD98059 did not affect caspase-3 activation. CONCLUSIONS AND IMPLICATIONS: In PC Cl3 cells, in the cell signalling pathways that lead to cisplatin resistance, PKC-delta controls ERK activity and, together with PKC-beta, also the induction of c-fos. Hence, the protective role of c-fos in thyroid cells has the potential to provide new opportunities for therapeutic intervention.


Assuntos
Antineoplásicos/farmacologia , Apoptose , Cisplatino/farmacologia , Resistencia a Medicamentos Antineoplásicos , Proteína Quinase C-delta/fisiologia , Proteínas Proto-Oncogênicas c-fos/fisiologia , Glândula Tireoide/citologia , Animais , Diferenciação Celular , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Ativação Enzimática , Isoenzimas/metabolismo , Sistema de Sinalização das MAP Quinases/fisiologia , Proteína Quinase C-delta/metabolismo , Proteínas Proto-Oncogênicas c-fos/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-fos/biossíntese , Ratos
19.
Biochem Pharmacol ; 77(6): 979-92, 2009 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-19111676

RESUMO

Epidermal growth factor receptor (EGFR) signal transduction pathway has been reported to play a vital role in the biologic progression of several tumours and as targets for therapeutic intervention. We have investigated the role of EGFR in the thyroid PC Cl3 cells response to the chemo-therapeutic agent cisplatin. It was found that cisplatin provoked (1) the activation (phosphorylation) and internalization of EGFR, (2) the phosphorylation of mitogen-activated protein kinase (MAPK)/p38, (3) the activation of PKC-epsilon, (4) the enhancement of matrix metalloproteinase-2 (MMP-2) expression and activity, (5) the generation of reactive oxygen species (ROS) and (6) the activation of the apoptotic intrinsic pathway. Inhibition or down regulation of EGFR reduced (1) the phosphorylation of MAPK/p38, (2) the cisplatin-provoked activation of PKC-epsilon, and (3) the activation of caspase-7 and PARP cleavage and the overall cells sensitivity to cisplatin. PKC-epsilon inhibition achieved by siRNA blocked MAPK/p38 activation and significantly increased the cell resistance to cisplatin. Finally, when the cisplatin-induced ROS generation was blocked by using NAD(P)H oxidase inhibitors, a decrease in cisplatin-induced MMP-2 enhancement, MAPK/p38 and EGFR activation, and caspase-7 proteolysis occurred. In conclusion, these findings supported a model in which cisplatin provokes an oxidant-induced MMP-2-dependent EGFR transactivation responsible for the induction of cell apoptosis, a process ascribable to the intracellular signalling of PKC-epsilon and MAPK/p38.


Assuntos
Cisplatino/farmacologia , Receptores ErbB/fisiologia , Glândula Tireoide/efeitos dos fármacos , Glândula Tireoide/metabolismo , Animais , Apoptose/efeitos dos fármacos , Apoptose/fisiologia , Linhagem Celular , Relação Dose-Resposta a Droga , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/metabolismo , Quinazolinas , Ratos , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Glândula Tireoide/citologia , Glândula Tireoide/enzimologia , Tirfostinas/farmacologia , Proteínas Quinases p38 Ativadas por Mitógeno/antagonistas & inibidores , Proteínas Quinases p38 Ativadas por Mitógeno/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA