Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Molecules ; 23(7)2018 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-29949910

RESUMO

New amphiphilic 1,4-DHP derivative C12-Man-Q with remoted cationic moieties at positions 2 and 6 was synthesised to study DNA delivery activity. The results were compared with data obtained for cationic 1,4-DHP derivative D19, which is known to be the most efficient one among the previously tested 1,4-DHP amphiphiles. We analysed the effects of C12-Man-Q concentration, complexation media, and complex/cell contact time on the gene delivery effectiveness and cell viability. Transmission electron microscopy data confirms that lipoplexes formed by the compound C12-Man-Q were quite uniform, vesicular-like structures with sizes of about 50 nm, and lipoplexes produced by compound D19 were of irregular shapes, varied in size in the range of 25⁻80 nm. Additionally, confocal microscopy results revealed that both amphiphiles effectively delivered green fluorescent protein expression plasmid into BHK-21 cells and produced a fluorescent signal with satisfactory efficiency, although compound C12-Man-Q was more cytotoxic to the BHK-21 cells with an increase of concentration. It can be concluded that optimal conditions for C12-Man-Q lipoplexes delivery in BHK-21 cells were the serum free media without 0.15 M NaCl, at an N/P ratio of 0.9. Compound D19 showed higher transfection efficiency to transfect BHK-21 and Cos-7 cell lines, when transfecting active proliferating cells. Although D19 was not able to transfect all studied cell lines we propose that it could be cell type specific. The compound C12-Man-Q showed modest delivery activity in all used cell lines, and higher activity was obtained in the case of H2-35 and B16 cells. The transfection efficiency in cell lines MCF-7, HeLa, and Huh-7 appears to be comparable to the reference compound D19 and minimal in the HepG2 cell line.


Assuntos
DNA/administração & dosagem , Técnicas de Transferência de Genes , Tensoativos/química , Tensoativos/síntese química , Animais , Cátions , Morte Celular/efeitos dos fármacos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Di-Hidropiridinas/síntese química , Di-Hidropiridinas/química , Di-Hidropiridinas/toxicidade , Humanos , Concentração Osmolar , Plasmídeos/genética , Tensoativos/toxicidade , Transfecção
2.
J Virol Methods ; 245: 28-34, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28315379

RESUMO

Semliki Forest virus (SFV) is a potential cancer gene therapy vector capable of providing high and transient expression of heterologous proteins in mammalian cells. However, SFV has shown suboptimal transduction levels in several cancer cell types as well as wide biodistribution of SFV has been observed after in vivo applications. Magnetic nanoparticles (MNPs) have been shown to increase cell transduction with several viral vectors in vitro under an external magnetic field and enhance magnetically guided viral vector delivery. Here, we examined a panel of MNPs for enhanced cancer cell transduction with SFV vector. Magneto-transduction using positively charged MNPs increased Semliki Forest virus transduction in TS/A mouse mammary carcinoma cells in vitro in the presence of fetal bovine serum. Positively charged MNPs efficiently captured SFV particles independently of capturing medium, and MNPs-SFV complexes were successfully separated from suspension by magnetic precipitation. These results reveal the potential application of MNPs for enhanced gene delivery by SFV vector as well as proposes magnetic precipitation for efficient concentration of SFV particles from different media.


Assuntos
Nanopartículas de Magnetita , Vírus da Floresta de Semliki/genética , Transdução Genética/métodos , Animais , Bovinos , Linhagem Celular Tumoral , Feminino , Técnicas de Transferência de Genes , Terapia Genética/métodos , Vetores Genéticos , Neoplasias Mamárias Experimentais/virologia , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA