Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Neurol ; 270(8): 3688-3702, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37079033

RESUMO

New-Onset Refractory Status Epilepticus (NORSE), including its subtype with a preceding febrile illness known as FIRES (Febrile Infection-Related Epilepsy Syndrome), is one of the most severe forms of status epilepticus. Despite an extensive workup (clinical evaluation, EEG, imaging, biological tests), the majority of NORSE cases remain unexplained (i.e., "cryptogenic NORSE"). Understanding the pathophysiological mechanisms underlying cryptogenic NORSE and the related long-term consequences is crucial to improve patient management and preventing secondary neuronal injury and drug-resistant post-NORSE epilepsy. Previously, neuropathological evaluations conducted on biopsies or autopsies have been found helpful for identifying the etiologies of some cases that were previously of unknown cause. Here, we summarize the findings of studies reporting neuropathology findings in patients with NORSE, including FIRES. We identified 64 cryptogenic cases and 66 neuropathology tissue samples, including 37 biopsies, 18 autopsies, and seven epilepsy surgeries (the type of tissue sample was not detailed for 4 cases). We describe the main neuropathology findings and place a particular emphasis on cases for which neuropathology findings helped establish a diagnosis or elucidate the pathophysiology of cryptogenic NORSE, or on described cases in which neuropathology findings supported the selection of specific treatments for patients with NORSE.


Assuntos
Epilepsia Resistente a Medicamentos , Encefalite , Estado Epiléptico , Humanos , Estado Epiléptico/etiologia , Estado Epiléptico/terapia , Estado Epiléptico/diagnóstico , Convulsões , Epilepsia Resistente a Medicamentos/diagnóstico , Encefalite/complicações , Neuropatologia
2.
Sci Rep ; 12(1): 17956, 2022 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-36289354

RESUMO

Gangliogliomas (GGs) are low-grade brain tumours that cause intractable focal epilepsy in children and adults. In GG, as in epileptogenic focal malformations (i.e., tuberous sclerosis complex, TSC), there is evidence of sustained neuroinflammation with involvement of the pro-inflammatory cytokine IL-1ß. On the other hand, anti-inflammatory mediators are less studied but bear relevance for understanding seizure mechanisms. Therefore, we investigated the effect of the key anti-inflammatory cytokine IL-10 on GABAergic neurotransmission in GG. We assessed the IL-10 dependent signaling by transcriptomic analysis, immunohistochemistry and performed voltage-clamp recordings on Xenopus oocytes microtransplanted with cell membranes from brain specimens, to overcome the limited availability of acute GG slices. We report that IL-10-related mRNAs were up-regulated in GG and slightly in TSC. Moreover, we found IL-10 receptors are expressed by neurons and astroglia. Furthermore, GABA currents were potentiated significantly by IL-10 in GG. This effect was time and dose-dependent and inhibited by blockade of IL-10 signaling. Notably, in the same tissue, IL-1ß reduced GABA current amplitude and prevented the IL-10 effect. These results suggest that in epileptogenic tissue, pro-inflammatory mechanisms of hyperexcitability prevail over key anti-inflammatory pathways enhancing GABAergic inhibition. Hence, boosting the effects of specific anti-inflammatory molecules could resolve inflammation and reduce intractable seizures.


Assuntos
Epilepsia Resistente a Medicamentos , Ganglioglioma , Adulto , Criança , Humanos , Ácido gama-Aminobutírico , Ganglioglioma/complicações , Interleucina-10/metabolismo , Interleucina-1beta/metabolismo , Receptores de GABA-A/metabolismo , Receptores Imunológicos/metabolismo , Receptores de Interleucina-10/metabolismo
3.
Int J Mol Sci ; 22(19)2021 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-34638900

RESUMO

We assessed the effect of antioxidant therapy using the Food and Drug Administration-approved respiratory drug N-acetylcysteine (NAC) or sulforaphane (SFN) as monotherapies or duotherapy in vitro in neuron-BV2 microglial co-cultures and validated the results in a lateral fluid-percussion model of TBI in rats. As in vitro measures, we assessed neuronal viability by microtubule-associated-protein 2 immunostaining, neuroinflammation by monitoring tumor necrosis factor (TNF) levels, and neurotoxicity by measuring nitrite levels. In vitro, duotherapy with NAC and SFN reduced nitrite levels to 40% (p < 0.001) and neuroinflammation to -29% (p < 0.001) compared with untreated culture. The treatment also improved neuronal viability up to 72% of that in a positive control (p < 0.001). The effect of NAC was negligible, however, compared with SFN. In vivo, antioxidant duotherapy slightly improved performance in the beam walking test. Interestingly, duotherapy treatment decreased the plasma interleukin-6 and TNF levels in sham-operated controls (p < 0.05). After TBI, no treatment effect on HMGB1 or plasma cytokine levels was detected. Also, no treatment effects on the composite neuroscore or cortical lesion area were detected. The robust favorable effect of duotherapy on neuroprotection, neuroinflammation, and oxidative stress in neuron-BV2 microglial co-cultures translated to modest favorable in vivo effects in a severe TBI model.


Assuntos
Acetilcisteína/farmacologia , Lesões Encefálicas Traumáticas/tratamento farmacológico , Isotiocianatos/farmacologia , Microglia/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Sulfóxidos/farmacologia , Animais , Antioxidantes/farmacologia , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/patologia , Lesões Encefálicas Traumáticas/genética , Lesões Encefálicas Traumáticas/metabolismo , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Modelos Animais de Doenças , Expressão Gênica/efeitos dos fármacos , Heme Oxigenase-1/genética , Heme Oxigenase-1/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Microglia/citologia , Microglia/metabolismo , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Neurônios/citologia , Neurônios/metabolismo , Ratos Sprague-Dawley
4.
Neurobiol Dis ; 158: 105468, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34358616

RESUMO

CXCL1, a functional murine orthologue of the human chemokine CXCL8 (IL-8), and its CXCR1 and CXCR2 receptors were investigated in a murine model of acquired epilepsy developing following status epilepticus (SE) induced by intra-amygdala kainate. CXCL8 and its receptors were also studied in human temporal lobe epilepsy (TLE). The functional involvement of the chemokine in seizure generation and neuronal cell loss was assessed in mice using reparixin (formerly referred to as repertaxin), a non-competitive allosteric inhibitor of CXCR1/2 receptors. We found a significant increase in hippocampal CXCL1 level within 24 h of SE onset that lasted for at least 1 week. No changes were measured in blood. In analogy with human TLE, immunohistochemistry in epileptic mice showed that CXCL1 and its two receptors were increased in hippocampal neuronal cells. Additional expression of these molecules was found in glia in human TLE. Mice were treated with reparixin or vehicle during SE and for additional 6 days thereafter, using subcutaneous osmotic minipumps. Drug-treated mice showed a faster SE decay, a reduced incidence of acute symptomatic seizures during 48 h post-SE, and a delayed time to spontaneous seizures onset compared to vehicle controls. Upon reparixin discontinuation, mice developed spontaneous seizures similar to vehicle mice, as shown by EEG monitoring at 14 days and 2.5 months post-SE. In the same epileptic mice, reparixin reduced neuronal cell loss in the hippocampus vs vehicle-injected mice, as assessed by Nissl staining at completion of EEG monitoring. Reparixin administration for 2 weeks in mice with established chronic seizures, reduced by 2-fold on average seizure number vs pre-treatment baseline, and this effect was reversible upon drug discontinuation. No significant changes in seizure number were measured in vehicle-injected epileptic mice that were EEG monitored in parallel. Data show that CXCL1-IL-8 signaling is activated in experimental and human epilepsy and contributes to acute and chronic seizures in mice, therefore representing a potential new target to attain anti-ictogenic effects.


Assuntos
Quimiocina CXCL1/genética , Epilepsia do Lobo Temporal/genética , Receptores de Interleucina-8A/genética , Receptores de Interleucina-8B/genética , Convulsões/genética , Animais , Quimiocina CXCL1/antagonistas & inibidores , Eletroencefalografia , Epilepsia do Lobo Temporal/fisiopatologia , Hipocampo/metabolismo , Imuno-Histoquímica , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neuroglia/metabolismo , Neuroglia/patologia , Neurônios/metabolismo , Neurônios/patologia , Receptores de Interleucina-8A/antagonistas & inibidores , Receptores de Interleucina-8B/antagonistas & inibidores , Convulsões/fisiopatologia , Estado Epiléptico/genética , Estado Epiléptico/patologia , Sulfonamidas/farmacologia
5.
Epilepsia ; 61(3): 359-386, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32196665

RESUMO

Prevention of epilepsy is a great unmet need. Acute central nervous system (CNS) insults such as traumatic brain injury (TBI), cerebrovascular accidents (CVA), and CNS infections account for 15%-20% of all epilepsy. Following TBI and CVA, there is a latency of days to years before epilepsy develops. This allows treatment to prevent or modify postinjury epilepsy. No such treatment exists. In animal models of acquired epilepsy, a number of medications in clinical use for diverse indications have been shown to have antiepileptogenic or disease-modifying effects, including medications with excellent side effect profiles. These include atorvastatin, ceftriaxone, losartan, isoflurane, N-acetylcysteine, and the antiseizure medications levetiracetam, brivaracetam, topiramate, gabapentin, pregabalin, vigabatrin, and eslicarbazepine acetate. In addition, there are preclinical antiepileptogenic data for anakinra, rapamycin, fingolimod, and erythropoietin, although these medications have potential for more serious side effects. However, except for vigabatrin, there have been almost no translation studies to prevent or modify epilepsy using these potentially "repurposable" medications. We may be missing an opportunity to develop preventive treatment for epilepsy by not evaluating these medications clinically. One reason for the lack of translation studies is that the preclinical data for most of these medications are disparate in terms of types of injury, models within different injury type, dosing, injury-treatment initiation latencies, treatment duration, and epilepsy outcome evaluation mode and duration. This makes it difficult to compare the relative strength of antiepileptogenic evidence across the molecules, and difficult to determine which drug(s) would be the best to evaluate clinically. Furthermore, most preclinical antiepileptogenic studies lack information needed for translation, such as dose-blood level relationship, brain target engagement, and dose-response, and many use treatment parameters that cannot be applied clinically, for example, treatment initiation before or at the time of injury and dosing higher than tolerated human equivalent dosing. Here, we review animal and human antiepileptogenic evidence for these medications. We highlight the gaps in our knowledge for each molecule that need to be filled in order to consider clinical translation, and we suggest a platform of preclinical antiepileptogenesis evaluation of potentially repurposable molecules or their combinations going forward.


Assuntos
Anticonvulsivantes/uso terapêutico , Antioxidantes/uso terapêutico , Epilepsia Pós-Traumática/prevenção & controle , Epilepsia/prevenção & controle , GABAérgicos/uso terapêutico , Fatores Imunológicos/uso terapêutico , Fármacos Neuroprotetores/uso terapêutico , Acetilcisteína/uso terapêutico , Animais , Atorvastatina/uso terapêutico , Lesões Encefálicas Traumáticas/complicações , Ceftriaxona/uso terapêutico , Dibenzazepinas/uso terapêutico , Reposicionamento de Medicamentos , Epilepsia/etiologia , Eritropoetina/uso terapêutico , Cloridrato de Fingolimode/uso terapêutico , Gabapentina/uso terapêutico , Humanos , Inflamação , Proteína Antagonista do Receptor de Interleucina 1/uso terapêutico , Isoflurano/uso terapêutico , Levetiracetam/uso terapêutico , Losartan/uso terapêutico , Estresse Oxidativo , Pregabalina/uso terapêutico , Pirrolidinonas/uso terapêutico , Sirolimo/uso terapêutico , Acidente Vascular Cerebral/complicações , Topiramato/uso terapêutico , Pesquisa Translacional Biomédica , Vigabatrina/uso terapêutico
6.
Epilepsia Open ; 4(2): 344-350, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31168503

RESUMO

Febrile infection-related epilepsy syndrome (FIRES) is a severe epileptic encephalopathy with presumed inflammatory origin and lacking effective treatments. Anakinra is the human recombinant interleukin 1 receptor antagonist clinically used in autoinflammatory or autoimmune conditions. We report a case of FIRES for which the spatial and temporal match between electroencephalography (EEG) and magnetic resonance imaging (MRI) focal alterations provides support for the detrimental synergic interplay between seizures and inflammation that may evolve to permanent focal lesions and progressive brain atrophy in weeks to months. Brain biopsy showed aspects of chronic neuroinflammation with scarce parenchymal lymphocytes. We report the novel evidence that anakinra reduces the relapse of highly recurrent refractory seizures at 1.5 years after FIRES onset. Our evidence, together with previously reported therapeutic effects of anakinra administered since the first days of disease onset, support the hypothesis that interleukin 1ß and inflammation-related factors play a crucial role in seizure recurrence in both the acute and chronic stages of the disease.

7.
Brain ; 142(7): e39, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-31145451

RESUMO

Epilepsy therapy is based on antiseizure drugs that treat the symptom, seizures, rather than the disease and are ineffective in up to 30% of patients. There are no treatments for modifying the disease-preventing seizure onset, reducing severity or improving prognosis. Among the potential molecular targets for attaining these unmet therapeutic needs, we focused on oxidative stress since it is a pathophysiological process commonly occurring in experimental epileptogenesis and observed in human epilepsy. Using a rat model of acquired epilepsy induced by electrical status epilepticus, we show that oxidative stress occurs in both neurons and astrocytes during epileptogenesis, as assessed by measuring biochemical and histological markers. This evidence was validated in the hippocampus of humans who died following status epilepticus. Oxidative stress was reduced in animals undergoing epileptogenesis by a transient treatment with N-acetylcysteine and sulforaphane, which act to increase glutathione levels through complementary mechanisms. These antioxidant drugs are already used in humans for other therapeutic indications. This drug combination transiently administered for 2 weeks during epileptogenesis inhibited oxidative stress more efficiently than either drug alone. The drug combination significantly delayed the onset of epilepsy, blocked disease progression between 2 and 5 months post-status epilepticus and drastically reduced the frequency of spontaneous seizures measured at 5 months without modifying the average seizure duration or the incidence of epilepsy in animals. Treatment also decreased hippocampal neuron loss and rescued cognitive deficits. Oxidative stress during epileptogenesis was associated with de novo brain and blood generation of high mobility group box 1 (HMGB1), a neuroinflammatory molecule implicated in seizure mechanisms. Drug-induced reduction of oxidative stress prevented HMGB1 generation, thus highlighting a potential novel mechanism contributing to therapeutic effects. Our data show that targeting oxidative stress with clinically used drugs for a limited time window starting early after injury significantly improves long-term disease outcomes. This intervention may be considered for patients exposed to potential epileptogenic insults.


Assuntos
Acetilcisteína/farmacologia , Epilepsia/prevenção & controle , Glutationa/metabolismo , Isotiocianatos/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Animais , Astrócitos/metabolismo , Biomarcadores/metabolismo , Estudos de Casos e Controles , Contagem de Células , Disfunção Cognitiva/complicações , Disfunção Cognitiva/prevenção & controle , Modelos Animais de Doenças , Estimulação Elétrica , Epilepsia/complicações , Proteína HMGB1/sangue , Hipocampo/metabolismo , Humanos , Masculino , Neurônios/metabolismo , Neurônios/patologia , Ratos , Estado Epiléptico/complicações , Estado Epiléptico/metabolismo , Estado Epiléptico/prevenção & controle , Sulfóxidos
8.
Brain Pathol ; 29(3): 351-365, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30303592

RESUMO

Oxidative stress (OS) occurs in brains of patients with epilepsy and coincides with brain inflammation, and both phenomena contribute to seizure generation in animal models. We investigated whether expression of OS and brain inflammation markers co-occurred also in resected brain tissue of patients with epileptogenic cortical malformations: hemimegalencephaly (HME), focal cortical dysplasia (FCD) and cortical tubers in tuberous sclerosis complex (TSC). Moreover, we studied molecular mechanisms linking OS and inflammation in an in vitro model of neuronal function. Untangling interdependency and underlying molecular mechanisms might pose new therapeutic strategies for treating patients with drug-resistant epilepsy of different etiologies. Immunohistochemistry was performed for specific OS markers xCT and iNOS and brain inflammation markers TLR4, COX-2 and NF-κB in cortical tissue derived from patients with HME, FCD IIa, IIb and TSC. Additionally, we studied gene expression of these markers using the human neuronal cell line SH-SY5Y in which OS was induced using H2 O2 . OS markers were higher in dysmorphic neurons and balloon/giant cells in cortex of patients with FCD IIb or TSC. Expression of OS markers was positively correlated to expression of brain inflammation markers. In vitro, 100 µM, but not 50 µM, of H2 O2 increased expression of TLR4, IL-1ß and COX-2. We found that NF-κB signaling was activated only upon stimulation with 100 µM H2 O2 leading to upregulation of TLR4 signaling and IL-1ß. The NF-κB inhibitor TPCA-1 completely reversed this effect. Our results show that OS positively correlates with neuroinflammation and is particularly evident in brain tissue of patients with FCD IIb and TSC. In vitro, NF-κB is involved in the switch to an inflammatory state after OS. We propose that the extent of OS can predict the neuroinflammatory state of the brain. Additionally, antioxidant treatments may prevent the switch to inflammation in neurons thus targeting multiple epileptogenic processes at once.


Assuntos
Malformações do Desenvolvimento Cortical/metabolismo , Malformações do Desenvolvimento Cortical/fisiopatologia , Estresse Oxidativo/fisiologia , Adolescente , Adulto , Encéfalo/metabolismo , Linhagem Celular , Córtex Cerebral/metabolismo , Criança , Pré-Escolar , Epilepsia Resistente a Medicamentos/metabolismo , Epilepsia/metabolismo , Feminino , Hemimegalencefalia , Humanos , Lactente , Recém-Nascido , Inflamação/metabolismo , Masculino , Malformações do Desenvolvimento Cortical do Grupo I , Pessoa de Meia-Idade , NF-kappa B/metabolismo , Neurônios/metabolismo , Convulsões/fisiopatologia , Transdução de Sinais , Esclerose Tuberosa
9.
Brain ; 141(11): 3130-3143, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30307467

RESUMO

Epilepsy therapy is based on drugs that treat the symptoms rather than the underlying mechanisms of the disease (epileptogenesis). There are no treatments for preventing seizures or improving disease prognosis, including neurological comorbidities. The search of pathogenic mechanisms of epileptogenesis highlighted that neuroinflammatory cytokines [i.e. interleukin-1ß (IL-1ß), tumour necrosis factor-α (Tnf-α)] are induced in human and experimental epilepsies, and contribute to seizure generation in animal models. A major role in controlling the inflammatory response is played by specialized pro-resolving lipid mediators acting on specific G-protein coupled receptors. Of note, the role that these pathways have in epileptogenic tissue remains largely unexplored. Using a murine model of epilepsy, we show that specialized pro-resolving mechanisms are activated by status epilepticus before the onset of spontaneous seizures, but with a marked delay as compared to the neuroinflammatory response. This was assessed by measuring the time course of mRNA levels of 5-lipoxygenase (Alox5) and 15-lipoxygenase (Alox15), the key biosynthetic enzymes of pro-resolving lipid mediators, versus Il1b and Tnfa transcripts and proteins. In the same hippocampal tissue, we found a similar delayed expression of two main pro-resolving receptors, the lipoxin A4 receptor/formyl peptide receptor 2 and the chemerin receptor. These receptors were also induced in the human hippocampus after status epilepticus and in patients with temporal lobe epilepsy. This evidence supports the hypothesis that the neuroinflammatory response is sustained by a failure to engage pro-resolving mechanisms during epileptogenesis. Lipidomic LC-MS/MS analysis showed that lipid mediator levels apt to resolve the neuroinflammatory response were also significantly altered in the hippocampus during epileptogenesis with a shift in the biosynthesis of several pro-resolving mediator families including the n-3 docosapentaenoic acid (DPA)-derived protectin D1. Of note, intracerebroventricular injection of this mediator during epileptogenesis in mice dose-dependently reduced the hippocampal expression of both Il1b and Tnfa mRNAs. This effect was associated with marked improvement in mouse weight recovery and rescue of cognitive deficit in the novel object recognition test. Notably, the frequency of spontaneous seizures was drastically reduced by 2-fold on average and the average seizure duration was shortened by 40% after treatment discontinuation. As a result, the total time spent in seizures was reduced by 3-fold in mice treated with n-3 DPA-derived protectin D1. Taken together, the present findings demonstrate that epilepsy is characterized by an inadequate engagement of resolution pathways. Boosting endogenous resolution responses significantly improved disease outcomes, providing novel treatment avenues.


Assuntos
Anticonvulsivantes/uso terapêutico , Ácidos Docosa-Hexaenoicos/uso terapêutico , Encefalite/tratamento farmacológico , Epilepsia/tratamento farmacológico , Animais , Araquidonato 15-Lipoxigenase/genética , Araquidonato 15-Lipoxigenase/metabolismo , Araquidonato 5-Lipoxigenase/genética , Araquidonato 5-Lipoxigenase/metabolismo , Antígeno CD11b/metabolismo , Citocinas/metabolismo , Dinoprostona/metabolismo , Modelos Animais de Doenças , Ácidos Docosa-Hexaenoicos/metabolismo , Encefalite/induzido quimicamente , Epilepsia/induzido quimicamente , Epilepsia/complicações , Epilepsia/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/genética , Hipocampo/patologia , Ácido Caínico/toxicidade , Leucotrieno B4/uso terapêutico , Metabolismo dos Lipídeos/efeitos dos fármacos , Lipoxinas/uso terapêutico , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos
10.
Nat Rev Dis Primers ; 4: 18024, 2018 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-29722352

RESUMO

Epilepsy affects all age groups and is one of the most common and most disabling neurological disorders. The accurate diagnosis of seizures is essential as some patients will be misdiagnosed with epilepsy, whereas others will receive an incorrect diagnosis. Indeed, errors in diagnosis are common, and many patients fail to receive the correct treatment, which often has severe consequences. Although many patients have seizure control using a single medication, others require multiple medications, resective surgery, neuromodulation devices or dietary therapies. In addition, one-third of patients will continue to have uncontrolled seizures. Epilepsy can substantially impair quality of life owing to seizures, comorbid mood and psychiatric disorders, cognitive deficits and adverse effects of medications. In addition, seizures can be fatal owing to direct effects on autonomic and arousal functions or owing to indirect effects such as drowning and other accidents. Deciphering the pathophysiology of epilepsy has advanced the understanding of the cellular and molecular events initiated by pathogenetic insults that transform normal circuits into epileptic circuits (epileptogenesis) and the mechanisms that generate seizures (ictogenesis). The discovery of >500 genes associated with epilepsy has led to new animal models, more precise diagnoses and, in some cases, targeted therapies.


Assuntos
Epilepsia/diagnóstico , Epilepsia/tratamento farmacológico , Animais , Anticonvulsivantes/efeitos adversos , Anticonvulsivantes/uso terapêutico , Modelos Animais de Doenças , Eletroencefalografia/métodos , Epilepsia/fisiopatologia , Testes Genéticos/métodos , Humanos , Programas de Rastreamento/métodos , Neuroimagem/métodos , Qualidade de Vida/psicologia , Convulsões/tratamento farmacológico , Convulsões/prevenção & controle
11.
Neurotherapeutics ; 15(2): 470-488, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29464573

RESUMO

Understanding the mechanisms of epileptogenesis is essential to develop novel drugs that could prevent or modify the disease. Neuroinflammation has been proposed as a promising target for therapeutic interventions to inhibit the epileptogenic process that evolves from traumatic brain injury. However, it remains unclear whether cytokine-related pathways, particularly TNFα signaling, have a critical role in the development of epilepsy. In this study, we investigated the role of innate inflammation in an in vitro model of post-traumatic epileptogenesis. We combined organotypic hippocampal slice cultures, representing an in vitro model of post-traumatic epilepsy, with multi-electrode array recordings to directly monitor the development of epileptiform activity and to examine the concomitant changes in cytokine release, cell death, and glial cell activation. We report that synchronized ictal- and interictal-like activities spontaneously evolve in this culture. Dynamic changes in the release of the pro-inflammatory cytokines IL-1ß, TNFα, and IL-6 were observed throughout the culture period (3 to 21 days in vitro) with persistent activation of microglia and astrocytes. We found that neutralizing TNFα with a polyclonal antibody significantly reduced ictal discharges, and this effect lasted for 1 week after antibody washout. Neither phenytoin nor an anti-IL-6 polyclonal antibody was efficacious in inhibiting the development of epileptiform activity. Our data show a sustained effect of the anti-TNFα antibody on the ictal progression in organotypic hippocampal slice cultures supporting the critical role of inflammatory mediators in epilepsy and establishing a proof-of-principle evidence for the utility of this preparation to test the therapeutic effects of anti-inflammatory treatments.


Assuntos
Lesões Encefálicas Traumáticas/metabolismo , Encefalite/metabolismo , Epilepsia/metabolismo , Hipocampo/metabolismo , Animais , Astrócitos/metabolismo , Lesões Encefálicas Traumáticas/complicações , Morte Celular , Citocinas/metabolismo , Modelos Animais de Doenças , Encefalite/complicações , Epilepsia/etiologia , Feminino , Masculino , Microglia/metabolismo , Neurônios/metabolismo , Ratos Sprague-Dawley , Técnicas de Cultura de Tecidos , Fator de Necrose Tumoral alfa/antagonistas & inibidores , Fator de Necrose Tumoral alfa/imunologia
12.
Glia ; 66(5): 1082-1097, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29384235

RESUMO

Astrocytes are important mediators of inflammatory processes in the brain and seem to play an important role in several neurological disorders, including epilepsy. Recent studies show that astrocytes produce several microRNAs, which may function as crucial regulators of inflammatory pathways and could be used as therapeutic target. We aim to study which miRNAs are produced by astrocytes during IL-1ß mediated inflammatory conditions in vitro, as well as their functional role and to validate these findings in human epileptogenic brain tissue. Sequencing was used to assess miRNA and mRNA expression in IL-1ß-stimulated human fetal astrocyte cultures. miRNAs were overexpressed in cell cultures using miRNA mimics. Expression of miRNAs in resected brain tissue from patients with tuberous sclerosis complex or temporal lobe epilepsy with hippocampal sclerosis was examined using in situ hybridization. Two differentially expressed miRNAs were found: miR146a and miR147b, which were associated with increased expression of genes related to the immune/inflammatory response. As previously reported for miR146a, overexpression of miR147b reduced the expression of the pro-inflammatory mediators IL-6 and COX-2 after IL-1ß stimulation in both astrocyte and tuberous sclerosis complex cell cultures. miR146a and miR147b overexpression decreased proliferation of astrocytes and promoted neuronal differentiation of human neural stem cells. Similarly to previous evidence for miR146a, miR147b was increased expressed in astrocytes in epileptogenic brain. Due to their anti-inflammatory effects, ability to restore aberrant astrocytic proliferation and promote neuronal differentiation, miR146a and miR147b deserve further investigation as potential therapeutic targets in neurological disorders associated with inflammation, such as epilepsy.


Assuntos
Astrócitos/imunologia , Inflamação/metabolismo , MicroRNAs/metabolismo , Astrócitos/patologia , Encéfalo/imunologia , Encéfalo/patologia , Encéfalo/cirurgia , Diferenciação Celular/fisiologia , Proliferação de Células/fisiologia , Células Cultivadas , Ciclo-Oxigenase 2/metabolismo , Epilepsia do Lobo Temporal/metabolismo , Epilepsia do Lobo Temporal/patologia , Epilepsia do Lobo Temporal/cirurgia , Humanos , Inflamação/patologia , Interleucina-1beta , Interleucina-6/metabolismo , Células-Tronco Neurais/metabolismo , RNA Mensageiro/metabolismo , Esclerose Tuberosa/metabolismo , Esclerose Tuberosa/patologia , Esclerose Tuberosa/cirurgia
13.
Epilepsia ; 59(1): 37-66, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29247482

RESUMO

The most common forms of acquired epilepsies arise following acute brain insults such as traumatic brain injury, stroke, or central nervous system infections. Treatment is effective for only 60%-70% of patients and remains symptomatic despite decades of effort to develop epilepsy prevention therapies. Recent preclinical efforts are focused on likely primary drivers of epileptogenesis, namely inflammation, neuron loss, plasticity, and circuit reorganization. This review suggests a path to identify neuronal and molecular targets for clinical testing of specific hypotheses about epileptogenesis and its prevention or modification. Acquired human epilepsies with different etiologies share some features with animal models. We identify these commonalities and discuss their relevance to the development of successful epilepsy prevention or disease modification strategies. Risk factors for developing epilepsy that appear common to multiple acute injury etiologies include intracranial bleeding, disruption of the blood-brain barrier, more severe injury, and early seizures within 1 week of injury. In diverse human epilepsies and animal models, seizures appear to propagate within a limbic or thalamocortical/corticocortical network. Common histopathologic features of epilepsy of diverse and mostly focal origin are microglial activation and astrogliosis, heterotopic neurons in the white matter, loss of neurons, and the presence of inflammatory cellular infiltrates. Astrocytes exhibit smaller K+ conductances and lose gap junction coupling in many animal models as well as in sclerotic hippocampi from temporal lobe epilepsy patients. There is increasing evidence that epilepsy can be prevented or aborted in preclinical animal models of acquired epilepsy by interfering with processes that appear common to multiple acute injury etiologies, for example, in post-status epilepticus models of focal epilepsy by transient treatment with a trkB/PLCγ1 inhibitor, isoflurane, or HMGB1 antibodies and by topical administration of adenosine, in the cortical fluid percussion injury model by focal cooling, and in the albumin posttraumatic epilepsy model by losartan. Preclinical studies further highlight the roles of mTOR1 pathways, JAK-STAT3, IL-1R/TLR4 signaling, and other inflammatory pathways in the genesis or modulation of epilepsy after brain injury. The wealth of commonalities, diversity of molecular targets identified preclinically, and likely multidimensional nature of epileptogenesis argue for a combinatorial strategy in prevention therapy. Going forward, the identification of impending epilepsy biomarkers to allow better patient selection, together with better alignment with multisite preclinical trials in animal models, should guide the clinical testing of new hypotheses for epileptogenesis and its prevention.


Assuntos
Lesões Encefálicas/complicações , Modelos Animais de Doenças , Epilepsia/etiologia , Pesquisa Translacional Biomédica , Animais , Lesões Encefálicas/classificação , Humanos
14.
Mol Neurobiol ; 55(5): 4463-4472, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-28669125

RESUMO

Insights into the dynamic changes in molecular processes occurring in the brain during epileptogenesis can substantially improve our understanding of their pathogenetic relevance. In this context, neuroinflammation is a potential mechanism of epileptogenesis which has recently been investigated in animal models by MRI or PET molecular imaging. Here, we developed an alternative and complementary molecular imaging strategy by designing a serotype 8 recombinant adeno-associated virus (AAV8) harboring promoter fragments of the GFAP or IL-1ß promoter and a luciferase reporter gene. Mice were injected intrahippocampally with rAAV8 and treated with intracortical kainic acid to induce status epilepticus (SE) and hence epileptogenesis. In vivo bioluminescence imaging combined with immunohistochemistry revealed a significant activation of the GFAP promoter 24 h and 3 days after kainate-induced SE. For IL-1ß, we identified the promoter region required for studying cell-specific induction of the promoter in longitudinal studies. We conclude that the GFAP promoter fragment represents a useful tool for monitoring the in vivo activation of astrocytes with an inflammatory phenotype during epileptogenesis, or under other pathophysiological conditions.


Assuntos
Astrócitos/patologia , Imageamento Tridimensional , Estado Epiléptico/diagnóstico por imagem , Estado Epiléptico/patologia , Animais , Astrócitos/metabolismo , Genes Reporter , Proteína Glial Fibrilar Ácida/genética , Proteína Glial Fibrilar Ácida/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Hipocampo/metabolismo , Humanos , Interleucina-1beta/genética , Ácido Caínico , Luciferases/metabolismo , Medições Luminescentes , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Regiões Promotoras Genéticas/genética , Células RAW 264.7 , Estado Epiléptico/genética
15.
Brain ; 140(7): 1885-1899, 2017 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-28575153

RESUMO

Epilepsy therapy is based on antiseizure drugs that treat the symptom, seizures, rather than the disease and are ineffective in up to 30% of patients. There are no treatments for modifying the disease-preventing seizure onset, reducing severity or improving prognosis. Among the potential molecular targets for attaining these unmet therapeutic needs, we focused on oxidative stress since it is a pathophysiological process commonly occurring in experimental epileptogenesis and observed in human epilepsy. Using a rat model of acquired epilepsy induced by electrical status epilepticus, we show that oxidative stress occurs in both neurons and astrocytes during epileptogenesis, as assessed by measuring biochemical and histological markers. This evidence was validated in the hippocampus of humans who died following status epilepticus. Oxidative stress was reduced in animals undergoing epileptogenesis by a transient treatment with N-acetylcysteine and sulforaphane, which act to increase glutathione levels through complementary mechanisms. These antioxidant drugs are already used in humans for other therapeutic indications. This drug combination transiently administered for 2 weeks during epileptogenesis inhibited oxidative stress more efficiently than either drug alone. The drug combination significantly delayed the onset of epilepsy, blocked disease progression between 2 and 5 months post-status epilepticus and drastically reduced the frequency of spontaneous seizures measured at 5 months without modifying the average seizure duration or the incidence of epilepsy in animals. Treatment also decreased hippocampal neuron loss and rescued cognitive deficits. Oxidative stress during epileptogenesis was associated with de novo brain and blood generation of disulfide high mobility group box 1 (HMGB1), a neuroinflammatory molecule implicated in seizure mechanisms. Drug-induced reduction of oxidative stress prevented disulfide HMGB1 generation, thus highlighting a potential novel mechanism contributing to therapeutic effects. Our data show that targeting oxidative stress with clinically used drugs for a limited time window starting early after injury significantly improves long-term disease outcomes. This intervention may be considered for patients exposed to potential epileptogenic insults.


Assuntos
Acetilcisteína/farmacologia , Acetilcisteína/uso terapêutico , Epilepsia/tratamento farmacológico , Domínios HMG-Box/efeitos dos fármacos , Proteína HMGB1/sangue , Proteína HMGB1/metabolismo , Isotiocianatos/uso terapêutico , Estresse Oxidativo/efeitos dos fármacos , Animais , Astrócitos/metabolismo , Biomarcadores/sangue , Biomarcadores/metabolismo , Disfunção Cognitiva/complicações , Disfunção Cognitiva/tratamento farmacológico , Modelos Animais de Doenças , Quimioterapia Combinada , Epilepsia/metabolismo , Proteína HMGB1/biossíntese , Hipocampo/metabolismo , Isotiocianatos/farmacologia , Masculino , Degeneração Neural/dietoterapia , Neurônios/metabolismo , Ratos , Sulfóxidos
16.
Curr Opin Pharmacol ; 26: 118-23, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26629681

RESUMO

A complex set of inflammatory molecules and their receptors has been described in epileptogenic foci in different forms of pharmacoresistant epilepsies. By activating receptor-mediated pathways in neurons, these molecules have profound neuromodulatory effects that are distinct from their canonical activation of immune functions. Importantly, the neuromodulatory actions of some inflammatory molecules contribute to hyperexcitability in neural networks that underlie seizures. This review summarizes recent findings related to the role of cytokines (IL-1beta and TNF-alpha) and danger signals (HMGB1) in decreasing seizure threshold, thereby contributing to seizure generation and the associated neuropathology. We will discuss preclinical studies suggesting that pharmacological inhibition of specific inflammatory signals may be useful to treat drug-resistant seizures in human epilepsy, and possibly arrest epileptogenesis in individuals at risk of developing the disease.


Assuntos
Epilepsia/imunologia , Neurônios/imunologia , Animais , Citocinas/imunologia , Humanos , Receptores Tipo I de Interleucina-1/imunologia , Receptores do Fator de Necrose Tumoral/imunologia , Receptores Toll-Like/imunologia
17.
Acta Neuropathol ; 131(2): 211-234, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26423537

RESUMO

Epilepsy is the tendency to have unprovoked epileptic seizures. Anything causing structural or functional derangement of brain physiology may lead to seizures, and different conditions may express themselves solely by recurrent seizures and thus be labelled "epilepsy." Worldwide, epilepsy is the most common serious neurological condition. The range of risk factors for the development of epilepsy varies with age and geographic location. Congenital, developmental and genetic conditions are mostly associated with the development of epilepsy in childhood, adolescence and early adulthood. Head trauma, infections of the central nervous system (CNS) and tumours may occur at any age and may lead to the development of epilepsy. Infections of the CNS are a major risk factor for epilepsy. The reported risk of unprovoked seizures in population-based cohorts of survivors of CNS infections from developed countries is between 6.8 and 8.3 %, and is much higher in resource-poor countries. In this review, the various viral, bacterial, fungal and parasitic infectious diseases of the CNS which result in seizures and epilepsy are discussed. The pathogenesis of epilepsy due to brain infections, as well as the role of experimental models to study mechanisms of epileptogenesis induced by infectious agents, is reviewed. The sterile (non-infectious) inflammatory response that occurs following brain insults is also discussed, as well as its overlap with inflammation due to infections, and the potential role in epileptogenesis. Furthermore, autoimmune encephalitis as a cause of seizures is reviewed. Potential strategies to prevent epilepsy resulting from brain infections and non-infectious inflammation are also considered.


Assuntos
Infecções do Sistema Nervoso Central/complicações , Epilepsia/etiologia , Epilepsia/imunologia , Animais , Infecções do Sistema Nervoso Central/patologia , Epilepsia/patologia , Humanos
18.
Nat Rev Neurol ; 11(11): 658-64, 2015 11.
Artigo em Inglês | MEDLINE | ID: mdl-26503922

RESUMO

Since the launch of our journal as Nature Clinical Practice Neurology in 2005, we have seen remarkable progress in many areas of neurology research, but what does the future hold? Will advances in basic research be translated into effective disease-modifying therapies, and will personalized medicine finally become a reality? For this special Viewpoint article, we invited a panel of Advisory Board members and other journal contributors to outline their research priorities and predictions in neurology for the next 10 years.


Assuntos
Neurologia/tendências , Doença de Alzheimer/diagnóstico , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Doença de Alzheimer/prevenção & controle , Animais , Autoanticorpos/metabolismo , Neoplasias do Sistema Nervoso Central/diagnóstico , Neoplasias do Sistema Nervoso Central/patologia , Neoplasias do Sistema Nervoso Central/terapia , Canalopatias/tratamento farmacológico , Canalopatias/metabolismo , Criança , Doenças Autoimunes Desmielinizantes do Sistema Nervoso Central/diagnóstico , Doenças Autoimunes Desmielinizantes do Sistema Nervoso Central/metabolismo , Epilepsia/diagnóstico , Epilepsia/tratamento farmacológico , Epilepsia/genética , Epilepsia/fisiopatologia , Previsões , Humanos , Regeneração Nervosa/fisiologia , Pediatria/tendências
19.
Neuropharmacology ; 96(Pt A): 70-82, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25445483

RESUMO

Increasing evidence underlines that prototypical inflammatory cytokines (IL-1ß, TNF-α and IL-6) either synthesized in the central (CNS) or peripheral nervous system (PNS) by resident cells, or imported by immune blood cells, are involved in several pathophysiological functions, including an unexpected impact on synaptic transmission and neuronal excitability. This review describes these unconventional neuromodulatory properties of cytokines, that are distinct from their classical action as effector molecules of the immune system. In addition to the role of cytokines in brain physiology, we report evidence that dysregulation of their biosynthesis and cellular release, or alterations in receptor-mediated intracellular pathways in target cells, leads to neuronal cell dysfunction and modifications in neuronal network excitability. As a consequence, targeting of these cytokines, and related signalling molecules, is considered a novel option for the development of therapies in various CNS or PNS disorders associated with an inflammatory component. This article is part of a Special Issue entitled 'Neuroimmunology and Synaptic Function'.


Assuntos
Citocinas/metabolismo , Mediadores da Inflamação/metabolismo , Neuroglia/fisiologia , Neurônios/fisiologia , Transmissão Sináptica , Animais , Canais de Cálcio/metabolismo , Humanos , Interleucina-1beta/metabolismo , Interleucina-6/metabolismo , Neuroglia/metabolismo , Plasticidade Neuronal , Neurônios/metabolismo , Canais de Potássio de Abertura Dependente da Tensão da Membrana/metabolismo , Transdução de Sinais , Fator de Necrose Tumoral alfa/metabolismo , Canais de Sódio Disparados por Voltagem/metabolismo
20.
Antioxid Redox Signal ; 21(12): 1726-40, 2014 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-24094148

RESUMO

AIMS: Using primary cultures of mouse hippocampal neurons, we studied the molecular and functional interactions between high mobility group box-1 (HMGB1) and the N-methyl-d-aspartate receptor (NMDAR), two proteins playing a key role in neuronal hyperexcitability. By measuring NMDA-induced calcium (Ca(2+)) increase in neuronal somata and neurotoxicity as functional read-out parameters, we explored the role of the redox state of HMGB1, the receptor involved, and the molecular signaling underlying its interactions with postsynaptic NMDAR. We also investigated whether HMGB1 redox state affects its proconvulsive effects in mice. RESULTS: Nonoxidizable HMGB1 with a triple cysteine-to-serine replacement (3S-HMGB1) was ineffective on NMDA response. Conversely, the disulfide-containing form of HMGB1 dose dependently enhanced NMDA-induced Ca(2+) increase in neuronal cell bodies. This effect was prevented by BoxA, a competitive HMGB1 antagonist, and by Rhodobacter sphaeroides lipopolysaccharide (LPS-RS), a toll-like receptor 4 (TLR4) selective antagonist, and it was abrogated in neurons lacking TLR4 while persisting in the absence of receptor for advanced glycation end products (RAGE). TLR4 and NMDAR subunit 1 (NR1) and 2B (NR2B) were colocalized in neurons. Disulfide HMGB1 effect on NMDA-induced Ca(2+) influx was prevented by 3-O-methylsphingomyelin (3-O-MS) and 4-amino-5-(4-chlorophenyl)-7-(t-butyl) pyrazolo [3,4-d] pyrimidine, (PP2) selective inhibitors of neutral sphingomyelinase and Src-family Tyr kinases, respectively. Disulfide HMGB1, but not 3S-HMGB1, increased Tyr(1472) phosphorylation of the NR2B subunit of the NMDAR, which is known to increase Ca(2+) channel permeability. Similarly, disulfide HMGB1 increased NMDA-induced neuronal cell death in vitro and enhanced kainate-induced seizures in vivo. INNOVATION AND CONCLUSION: We describe a novel molecular neuronal pathway activated by HMGB1 that could be targeted in vivo to prevent neurodegeneration and seizures mediated by excessive NMDARs stimulation.


Assuntos
Dissulfetos/metabolismo , Proteína HMGB1/química , Proteína HMGB1/metabolismo , Hipocampo/citologia , Neurônios/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Transdução de Sinais , Receptor 4 Toll-Like/metabolismo , Animais , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Oxirredução
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA