Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Open Res Eur ; 1: 107, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35967081

RESUMO

Background: MICA and MICB are tightly regulated stress-induced proteins that trigger the immune system by binding to the activating receptor NKG2D on cytotoxic lymphocytes. MICA and MICB are highly polymorphic molecules with prevalent expression on several types of solid tumors and limited expression in normal/healthy tissues, making them attractive targets for therapeutic intervention. Methods: We have generated a series of anti-MICA and MICB cross-reactive antibodies with the unique feature of binding to the most prevalent isoforms of both these molecules. Results: The anti-MICA and MICB antibody MICAB1, a human IgG1 Fc-engineered monoclonal antibody (mAb), displayed potent antibody-dependent cellular cytotoxicity (ADCC) and antibody-dependent cellular phagocytosis (ADCP) of MICA/B-expressing tumor cells in vitro. However, it showed insufficient efficiency against solid tumors in vivo, which prompted the development of antibody-drug conjugates (ADC). Indeed, optimal tumor control was achieved with MICAB1-ADC format in several solid tumor models, including patient-derived xenografts (PDX) and carcinogen-induced tumors in immunocompetent MICAgen transgenic mice. Conclusions: These data indicate that MICA and MICB are promising targets for cytotoxic immunotherapy.

2.
Cancer Res ; 74(21): 6060-70, 2014 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-25361998

RESUMO

Advanced cutaneous T-cell lymphoma (CTCL) remains an unmet medical need, which lacks effective targeted therapies. In this study, we report the development of IPH4102, a humanized monoclonal antibody that targets the immune receptor KIR3DL2, which is widely expressed on CTCL cells but few normal immune cells. Potent antitumor properties of IPH4102 were documented in allogeneic human CTCL cells and a mouse model of KIR3DL2(+) disease. IPH4102 antitumor activity was mediated by antibody-dependent cell cytotoxicity and phagocytosis. IPH4102 improved survival and reduced tumor growth in mice inoculated with KIR3DL2(+) tumors. Ex vivo efficacy was further evaluated in primary Sézary patient cells, sorted natural killer-based autologous assays, and direct spiking into Sézary patient peripheral blood mononuclear cells. In these settings, IPH4102 selectively and efficiently killed primary Sézary cells, including at unfavorable effector-to-target ratios characteristic of unsorted PBMC. Together, our results offer preclinical proof of concept for the clinical development of IPH4102 to treat patients with advanced CTCL.


Assuntos
Anticorpos Monoclonais Humanizados/administração & dosagem , Linfoma Cutâneo de Células T/tratamento farmacológico , Linfoma Cutâneo de Células T/imunologia , Receptores KIR3DL2/imunologia , Animais , Citotoxicidade Celular Dependente de Anticorpos/imunologia , Linhagem Celular Tumoral , Humanos , Linfoma Cutâneo de Células T/patologia , Camundongos , Estadiamento de Neoplasias , Receptores KIR3DL2/biossíntese
3.
J Immunol ; 185(4): 2080-8, 2010 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-20639488

RESUMO

Cross-talk between NK cells and dendritic cells (DCs) is critical for the potent therapeutic response to dsRNA, but the receptors involved remained controversial. We show in this paper that two dsRNAs, polyadenylic-polyuridylic acid and polyinosinic-polycytidylic acid [poly(I:C)], similarly engaged human TLR3, whereas only poly(I:C) triggered human RIG-I and MDA5. Both dsRNA enhanced NK cell activation within PBMCs but only poly(I:C) induced IFN-gamma. Although myeloid DCs (mDCs) were required for NK cell activation, induction of cytolytic potential and IFN-gamma production did not require contact with mDCs but was dependent on type I IFN and IL-12, respectively. Poly(I:C) but not polyadenylic-polyuridylic acid synergized with mDC-derived IL-12 for IFN-gamma production by acting directly on NK cells. Finally, the requirement of both TLR3 and Rig-like receptor (RLR) on mDCs and RLRs but not TLR3 on NK cells for IFN-gamma production was demonstrated using TLR3- and Cardif-deficient mice and human RIG-I-specific activator. Thus, we report the requirement of cotriggering TLR3 and RLR on mDCs and RLRs on NK cells for a pathogen product to induce potent innate cell activation.


Assuntos
RNA Helicases DEAD-box/metabolismo , Células Dendríticas/efeitos dos fármacos , Interferon gama/metabolismo , Células Matadoras Naturais/efeitos dos fármacos , Receptor 3 Toll-Like/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Linhagem Celular , Células Cultivadas , Proteína DEAD-box 58 , RNA Helicases DEAD-box/genética , Células Dendríticas/citologia , Células Dendríticas/metabolismo , Relação Dose-Resposta a Droga , Humanos , Helicase IFIH1 Induzida por Interferon , Células Matadoras Naturais/citologia , Células Matadoras Naturais/metabolismo , Ativação Linfocitária/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Células Mieloides/citologia , Células Mieloides/efeitos dos fármacos , Células Mieloides/metabolismo , Poli A-U/farmacologia , Poli I-C/farmacologia , RNA de Cadeia Dupla/farmacologia , Receptores Imunológicos , Receptor 3 Toll-Like/genética , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA