Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Theor Biol ; 587: 111806, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38574968

RESUMO

Cancer therapy often leads to the selective elimination of drug-sensitive cells from the tumour. This can favour the growth of cells resistant to the therapeutic agent, ultimately causing a tumour relapse. Castration-resistant prostate cancer (CRPC) is a well-characterised instance of this phenomenon. In CRPC, after systemic androgen deprivation therapy (ADT), a subset of drug-resistant cancer cells autonomously produce testosterone, thus enabling tumour regrowth. A previous theoretical study has shown that such a tumour relapse can be delayed by inhibiting the growth of drug-resistant cells using biotic competition from drug-sensitive cells. In this context, the centrality of resource dynamics to intra-tumour competition in the CRPC system indicates clear scope for the construction of theoretical models that can explicitly incorporate the underlying mechanisms of tumour ecology. In the current study, we use a modified logistic framework to model cell-cell interactions in terms of the production and consumption of resources. Our results show that steady state composition of CRPC can be understood as a composite function of the availability and utilisation efficiency of two resources-oxygen and testosterone. In particular, we show that the effect of changing resource availability or use efficiency is conditioned by their general abundance regimes. Testosterone typically functions in trace amounts and thus affects steady state behaviour of the CRPC system differently from oxygen, which is usually available at higher levels. Our data thus indicate that explicit consideration of resource dynamics can produce novel and useful mechanistic understanding of CRPC. Furthermore, such a modelling approach also incorporates variables into the system's description that can be directly measured in a clinical context. This is therefore a promising avenue of research in cancer ecology that could lead to therapeutic approaches that are more clearly rooted in the biology of CRPC.


Assuntos
Modelos Biológicos , Neoplasias de Próstata Resistentes à Castração , Testosterona , Masculino , Humanos , Neoplasias de Próstata Resistentes à Castração/patologia , Neoplasias de Próstata Resistentes à Castração/metabolismo , Testosterona/metabolismo , Oxigênio/metabolismo , Comunicação Celular/fisiologia , Resistencia a Medicamentos Antineoplásicos
2.
Sci Rep ; 10(1): 4223, 2020 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-32144283

RESUMO

Somatic evolution of cancer involves a series of mutations, and attendant changes, in one or more clones of cells. A "bad luck" type model assumes chance accumulation of mutations. The clonal expansion model assumes, on the other hand, that any mutation leading to partial loss of regulation of cell proliferation will give a selective advantage to the mutant. However, a number of experiments show that an intermediate pre-cancer mutant has only a conditional selective advantage. Given that tissue microenvironmental conditions differ across individuals, this selective advantage to a mutant could be widely distributed over the population. We evaluate three models, namely "bad luck", context-independent, and context-dependent selection, in a comparative framework, on their ability to predict patterns in total incidence, age-specific incidence, stem cell number-incidence relationship and other known phenomena associated with cancers. Results show that among the factors considered in the model, context dependence is necessary and sufficient to explain observed epidemiological patterns, and that cancer evolution is largely selection-limited, rather than mutation-limited. A wide range of physiological, genetic and behavioural factors influence the tissue micro-environment, and could therefore be the source of this context dependence in somatic evolution of cancer. The identification and targeting of these micro-environmental factors that influence the dynamics of selection offer new possibilities for cancer prevention.


Assuntos
Evolução Clonal , Modelos Teóricos , Proteínas de Neoplasias/genética , Neoplasias/genética , Neoplasias/patologia , Seleção Genética , Microambiente Tumoral , Humanos , Mutação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA