RESUMO
The United States Centers for Disease Control and Prevention and World Health Organization recognize that wearing cloth face coverings can slow the transmission of respiratory diseases via source control. Adding a partial layer of material with a high filtration efficiency (FE, e.g., polypropylene sheets that meet the HEPA standard) as an insert can potentially provide additional personal protection; however, data on the necessary areal coverage are sparse. The relationship between insert area ratio (IAR) relative to fabric area, FE, differential pressure (ΔP, a surrogate for breathability), and quality factor (QF, a ratio including FE and ΔP) utilizing two fabrics (rayon and 100% cotton lightweight flannel) and three insert materials (HEPA vacuum bag, sterilization wrap and paper coffee filter) was investigated. The effect of inserts on particle flows mimicking human exhalation is semiquantitatively and qualitatively examined using flow visualization techniques. The following was found: (1) The relationship between FE, ΔP, and QF is complex, and a trade-off exists between personal protection from filtration during inhalation and source control from leakage during exhalation; (2) FE and ΔP of the composite covering increase with IAR, and the rate is dependent upon insert type; (3) improvements (decrements) in the QF of the composite assemblage require inserts with a higher (lower) QF than the fabric and larger differences yield greater gains (losses); (4) the increased ΔP from an insert results in increased leakage during exhalation; (5) to minimize leaks, ΔP must be as low as possible; and (6) small relative areas not covered by an insert (i.e., IAR slightly smaller than 1) strongly deteriorate the benefits of an insert similar to small leaks in a covering.
Assuntos
Máscaras , Dispositivos de Proteção Respiratória , Humanos , Aerossóis , Têxteis , FiltraçãoRESUMO
Filtration efficiency (FE), differential pressure (ΔP), quality factor (QF), and construction parameters were measured for 32 cloth materials (14 cotton, 1 wool, 9 synthetic, 4 synthetic blends, and 4 synthetic/cotton blends) used in cloth masks intended for protection from the SARS-CoV-2 virus (diameter 100 ± 10 nm). Seven polypropylene-based fiber filter materials were also measured including surgical masks and N95 respirators. Additional measurements were performed on both multilayered and mixed-material samples of natural, synthetic, or natural-synthetic blends to mimic cloth mask construction methods. Materials were microimaged and tested against size selected NaCl aerosol with particle mobility diameters between 50 and 825 nm. Three of the top five best performing samples were woven 100% cotton with high to moderate yarn counts, and the other two were woven synthetics of moderate yarn counts. In contrast to recently published studies, samples utilizing mixed materials did not exhibit a significant difference in the measured FE when compared to the product of the individual FE for the components. The FE and ΔP increased monotonically with the number of cloth layers for a lightweight flannel, suggesting that multilayered cloth masks may offer increased protection from nanometer-sized aerosol with a maximum FE dictated by breathability (i.e., ΔP).