Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Mol Pharmacol ; 69(1): 346-53, 2006 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-16234483

RESUMO

2-Chloro-9-(2'-deoxy-2'-fluoro-beta-d-arabinofuranosyl)adenine (Cl-F-ara-A, clofarabine), a purine nucleoside analog with structural similarity to 2-chloro-2'-deoxyadenosine (Cl-dAdo, cladribine) and 9-beta-d-arabinofuranosyl-2-fluoroadenine (F-ara-A, fludarabine), has activity in adult and pediatric leukemias. Mediated transport of the purine nucleoside analogs is believed to occur through the action of two structurally unrelated protein families, the equilibrative nucleoside transporters (ENTs) and the concentrative nucleoside transporters (CNTs). The current work assessed the transportability of Cl-F-ara-A, Cl-dAdo, and F-ara-A in cultured human leukemic CEM cells that were either nucleoside transport-defective or possessed individual human nucleoside transporter types and in Xenopus laevis oocytes and Saccharomyces cerevisiae yeast that produced individual recombinant human nucleoside transporter types. Cells producing hENT1 or hCNT3 exhibited the highest uptake of Cl-F-ara-A, whereas nucleoside transport-deficient cells and cells producing hCNT1 lacked uptake altogether. When Cl-F-ara-A transport rates by hENT1 were compared with those of Cl-dAdo and F-ara-A, Cl-dAdo had the highest efficiency of transport, although Cl-F-ara-A showed the greatest accumulation during 5-min exposures. In cytotoxicity studies with the CEM lines, Cl-F-ara-A was more cytotoxic to cells producing hENT1 than to the nucleoside transport-deficient cells. The efficiency of Cl-F-ara-A transport by oocytes with recombinant transporters was hCNT3 > hENT2 > hENT1 > hCNT2; no transport was observed with hCNT1. Affinity studies with recombinant transporters produced in yeast showed that hENT1, hENT2, and hCNT3 all had higher affinities for Cl-F-ara-A than for either Cl-dAdo or F-ara-A. These results suggest that the nature and activity of the plasma membrane proteins capable of inward transport of nucleosides are important determinants of Cl-F-ara-A activity in human cells.


Assuntos
Antineoplásicos/metabolismo , Arabinonucleosídeos/metabolismo , Cladribina/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Vidarabina/análogos & derivados , Nucleotídeos de Adenina , Animais , Antineoplásicos/farmacologia , Arabinonucleosídeos/farmacologia , Transporte Biológico , Linhagem Celular , Cladribina/farmacologia , Clofarabina , Humanos , Proteínas Recombinantes/metabolismo , Vidarabina/metabolismo , Vidarabina/farmacologia , Xenopus laevis
2.
Mol Pharmacol ; 64(6): 1512-20, 2003 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-14645682

RESUMO

An extensive series of structural analogs of uridine that differed in substituents in the sugar and/or base moieties were subjected to inhibitor-sensitivity assays in a yeast expression system to define uridine structural determinants for inhibitors of human concentrative nucleoside transporters 1 and 3 (hCNT1 and hCNT3). The production of recombinant hCNT1 and hCNT3 in a nucleoside-transporter deficient strain of yeast was confirmed by immunoblotting, and uridine transport parameters (Km, Vmax) were determined by defining the concentration dependence of initial rates of uptake of [3H]uridine by intact yeast. The Ki values of uridine analogs were obtained from inhibitory-effect curves and converted to binding energies. hCNT1 and hCNT3 recognized uridine through distinguishable binding motifs. hCNT1 was sensitive to modifications at C(3), less sensitive at C(5') or N(3), and much less sensitive at C(2'). hCNT3 was sensitive to modifications at C(3'), but much less sensitive at N(3), C(5') or C(2'). The changes of binding energy between transporter proteins and different uridine analogs suggested that hCNT1 formed hydrogen bonds (H-bonds) with C(3')-OH, C(5')-OH, or N(3)-H of uridine, but not with C(2')-OH, whereas hCNT3 formed H-bonds to C(3')-OH, but not to N(3)-H, C(5')-OH, and C(2')-OH. Both transporters barely tolerated modifications at C(3') or inversion of configurations at C(2')orC(3'). The binding profiles identified in this study can be used to predict the potential transportability of nucleoside analogs, including anticancer or antiviral nucleoside drugs, by hCNT1 and hCNT3.


Assuntos
Proteínas de Membrana Transportadoras/metabolismo , Saccharomyces cerevisiae/metabolismo , Uridina/metabolismo , Sítios de Ligação , Relação Dose-Resposta a Droga , Humanos , Proteínas de Transporte de Nucleosídeos/metabolismo , Ligação Proteica , Proteínas Recombinantes/metabolismo , Uridina/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA