Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 87
Filtrar
1.
Cancers (Basel) ; 15(11)2023 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-37296927

RESUMO

BACKGROUND: Obesity is a well-known risk factor for cancer. We have previously reported the role of adipose-tissue-derived mesenchymal stem cells from obese individuals (ob-ASC) in the promotion of pathogenic Th17 cells and immune check point (ICP) upregulation. Thus, we postulated herein that this mechanism could contribute to breast cancer (BC) aggressiveness. METHODS: Conditioning medium (CM) from mitogen-activated ob-ASC and immune cell co-cultures were added to two human breast cancer cell line (BCCL) cultures. Expressions of pro-inflammatory cytokines, angiogenesis markers, metalloproteinases, and PD-L1 (a major ICP) were measured at the mRNA and/or protein levels. BCCL migration was explored in wound healing assays. Anti-cytokine neutralizing antibodies (Ab) were added to co-cultures. RESULTS: CM from ob-ASC/MNC co-cultures increased IL-1ß, IL-8, IL-6, VEGF-A, MMP-9, and PD-L1 expressions in both BCCLs and accelerated their migration. The use of Abs demonstrated differential effects for IL-17A and IFNγ on BCCL pro-inflammatory cytokine over-expression or PD-L1 upregulation, respectively, but potentiating effects on BCCL migration. Finally, co-cultures with ob-ASC, but not lean ASC, enhanced PD-L1 expression. CONCLUSIONS: Our results demonstrate increased inflammation and ICP markers and accelerated BCCL migration following the activation of pathogenic Th17 cells by ob-ASC, which could represent a new mechanism linking obesity with BC progression.

2.
J Nutr Biochem ; 117: 109334, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36965784

RESUMO

The adaptive response to overfeeding is associated with profound modifications of gene expression in adipose tissue to support lipid storage and weight gain. The objective of this study was to assess in healthy lean men whether a supplementation with polyphenols could interact with these molecular adaptations. Abdominal subcutaneous adipose tissue biopsies were sampled from 42 subjects participating to an overfeeding protocol providing an excess of 50% of their total energy expenditure for 31 days, and who were supplemented with 2 g/day of grape polyphenols or a placebo. Gene expression profiling was performed by RNA sequencing. Overfeeding led to a modification of the expression of 163 and 352 genes in the placebo and polyphenol groups, respectively. The GO functions of these genes were mostly involved in lipid metabolism, followed by genes involved in adipose tissue remodeling and expansion. In response to overfeeding, 812 genes were differentially regulated between groups. Among them, a set of 41 genes were related to angiogenesis and were down-regulated in the polyphenol group. Immunohistochemistry targeting PECAM1, as endothelial cell marker, confirmed reduced angiogenesis in this group. Finally, quercetin and isorhamnetin, two polyphenol species enriched in the plasma of the volunteers submitted to the polyphenols, were found to inhibit human umbilical vein endothelial cells migration in vitro. Polyphenol supplementation do not prevent the regulation of genes related to lipid metabolism in human adipose tissue during overfeeding, but impact the angiogenesis pathways. This may potentially contribute to a protection against adipose tissue expansion during dynamic phase of weight gain.


Assuntos
Vitis , Masculino , Humanos , Células Endoteliais/metabolismo , Tecido Adiposo/metabolismo , Obesidade/metabolismo , Aumento de Peso/fisiologia , Suplementos Nutricionais , Polifenóis/farmacologia , Polifenóis/metabolismo
3.
Science ; 379(6634): 826-833, 2023 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-36821686

RESUMO

The intestinal microbiota is known to influence postnatal growth. We previously found that a strain of Lactiplantibacillus plantarum (strain LpWJL) buffers the adverse effects of chronic undernutrition on the growth of juvenile germ-free mice. Here, we report that LpWJL sustains the postnatal growth of malnourished conventional animals and supports both insulin-like growth factor-1 (IGF-1) and insulin production and activity. We have identified cell walls isolated from LpWJL, as well as muramyl dipeptide and mifamurtide, as sufficient cues to stimulate animal growth despite undernutrition. Further, we found that NOD2 is necessary in intestinal epithelial cells for LpWJL-mediated IGF-1 production and for postnatal growth promotion in malnourished conventional animals. These findings indicate that, coupled with renutrition, bacteria cell walls or purified NOD2 ligands have the potential to alleviate stunting.


Assuntos
Microbioma Gastrointestinal , Crescimento , Intestinos , Lactobacillaceae , Desnutrição , Proteína Adaptadora de Sinalização NOD2 , Animais , Camundongos , Parede Celular/química , Células Epiteliais/microbiologia , Células Epiteliais/fisiologia , Microbioma Gastrointestinal/fisiologia , Vida Livre de Germes , Transtornos do Crescimento/fisiopatologia , Transtornos do Crescimento/terapia , Insulina/metabolismo , Fator de Crescimento Insulin-Like I/metabolismo , Mucosa Intestinal/microbiologia , Mucosa Intestinal/fisiologia , Intestinos/microbiologia , Intestinos/fisiologia , Lactobacillaceae/fisiologia , Desnutrição/fisiopatologia , Desnutrição/terapia , Proteína Adaptadora de Sinalização NOD2/metabolismo , Crescimento/efeitos dos fármacos , Crescimento/fisiologia , Acetilmuramil-Alanil-Isoglutamina/farmacologia , Acetilmuramil-Alanil-Isoglutamina/uso terapêutico
4.
Front Nutr ; 9: 998044, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36386937

RESUMO

Introduction and aims: Dietary polyphenols have long been associated with health benefits, including the prevention of obesity and related chronic diseases. Overfeeding was shown to rapidly induce weight gain and fat mass, associated with mild insulin resistance in humans, and thus represents a suitable model of the metabolic complications resulting from obesity. We studied the effects of a polyphenol-rich grape extract supplementation on the plasma metabolome during an overfeeding intervention in adults, in two randomized parallel controlled clinical trials. Methods: Blood plasma samples from 40 normal weight to overweight male adults, submitted to a 31-day overfeeding (additional 50% of energy requirement by a high calorie-high fructose diet), given either 2 g/day grape polyphenol extract or a placebo at 0, 15, 21, and 31 days were analyzed (Lyon study). Samples from a similarly designed trial on females (20 subjects) were collected in parallel (Lausanne study). Nuclear magnetic resonance (NMR)-based metabolomics was conducted to characterize metabolome changes induced by overfeeding and associated effects from polyphenol supplementation. The clinical trials are registered under the numbers NCT02145780 and NCT02225457 at ClinicalTrials.gov. Results: Changes in plasma levels of many metabolic markers, including branched chain amino acids (BCAA), ketone bodies and glucose in both placebo as well as upon polyphenol intervention were identified in the Lyon study. Polyphenol supplementation counterbalanced levels of BCAA found to be induced by overfeeding. These results were further corroborated in the Lausanne female study. Conclusion: Administration of grape polyphenol-rich extract over 1 month period was associated with a protective metabolic effect against overfeeding in adults.

5.
Front Nutr ; 9: 854255, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35614978

RESUMO

Two randomized placebo-controlled double-blind paralleled trials (42 men in Lyon, 19 women in Lausanne) were designed to test 2 g/day of a grape polyphenol extract during 31 days of high calorie-high fructose overfeeding. Hyperinsulinemic-euglycemic clamps and test meals with [1,1,1-13C3]-triolein were performed before and at the end of the intervention. Changes in body composition were assessed by dual-energy X-ray absorptiometry (DEXA). Fat volumes of the abdominal region and liver fat content were determined in men only, using 3D-magnetic resonance imaging (MRI) and magnetic resonance spectroscopy (MRS) at 3T. Adipocyte's size was measured in subcutaneous fat biopsies. Bodyweight and fat mass increased during overfeeding, in men and in women. While whole body insulin sensitivity did not change, homeostasis model assessment of insulin resistance (HOMA-IR) and the hepatic insulin resistance index (HIR) increased during overfeeding. Liver fat increased in men. However, grape polyphenol supplementation did not modify the metabolic and anthropometric parameters or counteract the changes during overfeeding, neither in men nor in women. Polyphenol intake was associated with a reduction in adipocyte size in women femoral fat. Grape polyphenol supplementation did not counteract the moderated metabolic alterations induced by one month of high calorie-high fructose overfeeding in men and women. The clinical trials are registered under the numbers NCT02145780 and NCT02225457 at ClinicalTrials.gov and available at https://clinicaltrials.gov/ct2/show/NCT02145780 and https://clinicaltrials.gov/ct2/show/NCT02225457.

6.
J Hepatol ; 77(3): 710-722, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35358616

RESUMO

BACKGROUND & AIMS: Hepatic insulin resistance in obesity and type 2 diabetes was recently associated with endoplasmic reticulum (ER)-mitochondria miscommunication. These contact sites (mitochondria-associated membranes: MAMs) are highly dynamic and involved in many functions; however, whether MAM dysfunction plays a causal role in hepatic insulin resistance and steatosis is not clear. Thus, we aimed to determine whether and how organelle miscommunication plays a role in the onset and progression of hepatic metabolic impairment. METHODS: We analyzed hepatic ER-mitochondria interactions and calcium exchange in a time-dependent and reversible manner in mice with diet-induced obesity. Additionally, we used recombinant adenovirus to express a specific organelle spacer or linker in mouse livers, to determine the causal impact of MAM dysfunction on hepatic metabolic alterations. RESULTS: Disruption of ER-mitochondria interactions and calcium exchange is an early event preceding hepatic insulin resistance and steatosis in mice with diet-induced obesity. Interestingly, an 8-week reversal diet concomitantly reversed hepatic organelle miscommunication and insulin resistance in obese mice. Mechanistically, disrupting structural and functional ER-mitochondria interactions through the hepatic overexpression of the organelle spacer FATE1 was sufficient to impair hepatic insulin action and glucose homeostasis. In addition, FATE1-mediated organelle miscommunication disrupted lipid-related mitochondrial oxidative metabolism and induced hepatic steatosis. Conversely, reinforcement of ER-mitochondria interactions through hepatic expression of a synthetic linker prevented diet-induced glucose intolerance after 4 weeks' overnutrition. Importantly, ER-mitochondria miscommunication was confirmed in the liver of obese patients with type 2 diabetes, and correlated with glycemia, HbA1c and HOMA-IR index. CONCLUSIONS: ER-mitochondria miscommunication is an early causal trigger of hepatic insulin resistance and steatosis, and can be reversed by switching to a healthy diet. Thus, targeting MAMs could help to restore metabolic homeostasis. LAY SUMMARY: The literature suggests that interactions between the endoplasmic reticulum and mitochondria could play a role in hepatic insulin resistance and steatosis during chronic obesity. In the present study, we reappraised the time-dependent regulation of hepatic endoplasmic reticulum-mitochondria interactions and calcium exchange, investigating reversibility and causality, in mice with diet-induced obesity. We also assessed the relevance of our findings to humans. We show that organelle miscommunication is an early causal trigger of hepatic insulin resistance and steatosis that can be improved by nutritional strategies.


Assuntos
Diabetes Mellitus Tipo 2 , Fígado Gorduroso , Resistência à Insulina , Hepatopatias , Animais , Cálcio/metabolismo , Comunicação , Proteínas de Ligação a DNA/metabolismo , Diabetes Mellitus Tipo 2/etiologia , Diabetes Mellitus Tipo 2/metabolismo , Retículo Endoplasmático/metabolismo , Fígado Gorduroso/etiologia , Fígado Gorduroso/metabolismo , Glucose/metabolismo , Humanos , Fígado/metabolismo , Hepatopatias/metabolismo , Camundongos , Mitocôndrias/metabolismo , Obesidade/complicações , Obesidade/metabolismo , Fatores de Transcrição/metabolismo
7.
PLoS One ; 17(2): e0263479, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35120179

RESUMO

As blood-derived miRNAs (c-miRNAs) are modulated by exercise and nutrition, we postulated that they might be used to monitor the effects of a lifestyle intervention (LI) to prevent diabetes development. To challenge this hypothesis, obese Asian Indian pre-diabetic patients were submitted to diet modifications and physical activity for 4 months (LI group) and compared to a control group which was given recommendations only. We have considered 2 periods of time to analyze the data, i.e.; a first one to study the response to the intervention (4 months), and a second one post-intervention (8 months). At basal, 4 months and 8 months post-intervention the levels of 17 c-miRNAs were quantified, selected either for their relevance to the pathology or because they are known to be modulated by physical activity or diet. Their variations were correlated with variations of 25 metabolic and anthropometric parameters and cytokines. As expected, fasting-glycaemia, insulin-sensitivity, levels of exercise- and obesity-induced cytokines were ameliorated after 4 months. In addition, the levels of 4 miRNAs (i.e.; miR-128-3p, miR-374a-5p, miR-221-3p, and miR-133a-3p) were changed only in the LI group and were correlated with metabolic improvement (insulin sensitivity, cytokine levels, waist circumference and systolic blood pressure). However, 8 months post-intervention almost all ameliorated metabolic parameters declined indicating that the volunteers did not continue the protocol on their own. Surprisingly, the LI positive effects on c-miRNA levels were still detected, and were even more pronounced 8 months post-intervention. In parallel, MCP-1, involved in tissue infiltration by immune cells, and Il-6, adiponectin and irisin, which have anti-inflammatory effects, continued to be significantly and positively modified, 8 months post-intervention. These data demonstrated for the first time, that c-miRNA correlations with metabolic parameters and insulin sensitivity are in fact only indirect and likely associated with the level systemic inflammation. More generally speaking, this important result explains the high variability between the previous studies designed to identify specific c-miRNAs associated with the severity of insulin-resistance. The results of all these studies should take into account the level of inflammation of the patients. In addition, this finding could also explain why, whatever the pathology considered (i.e.; cancers, diabetes, neurodegenerative disorders, inflammatory diseases) the same subset of miRNAs is always found altered in the blood of patients vs healthy subjects, as these pathologies are all associated with the development of inflammation.


Assuntos
Inflamação/sangue , Resistência à Insulina , MicroRNAs/sangue , Obesidade/sangue , Estado Pré-Diabético/sangue , Circunferência da Cintura , Adulto , Antropometria , Povo Asiático , Glicemia/análise , Citocinas/metabolismo , Exercício Físico , Jejum , Feminino , Humanos , Insulina/metabolismo , Estilo de Vida , Masculino , Pessoa de Meia-Idade , Ciências da Nutrição , Obesidade/fisiopatologia , Estado Pré-Diabético/fisiopatologia , Sístole
8.
J Cachexia Sarcopenia Muscle ; 12(6): 2122-2133, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34704398

RESUMO

BACKGROUND: Cerebral palsy (CP) associates cerebral function damages with strong locomotor defects and premature sarcopenia. We previously showed that fibroblast growth factor 19 (FGF19) exerts hypertrophic effects on skeletal muscle and improves muscle mass and strength in mouse models with muscle atrophy. Facing the lack of therapeutics to treat locomotor dysfunctions in CP, we investigated whether FGF19 treatment could have beneficial effects in an experimental rat model of CP. METHODS: Cerebral palsy was induced in male Wistar rat pups by perinatal anoxia immediately after birth and by sensorimotor restriction of hind paws maintained until Day 28. Daily subcutaneous injections with recombinant human FGF19 (0.1 mg/kg bw) were performed from Days 22 to 28. Locomotor activity and muscle strength were assessed before and after FGF19 treatment. At Day 29, motor coordination on rotarod and various musculoskeletal parameters (weight of tibia bone and of soleus and extensor digitorum longus (EDL) muscles; area of skeletal muscle fibres) were evaluated. In addition, expression of specific genes linked to human CP was measured in rat skeletal muscles. RESULTS: Compared to controls, CP rats had reduced locomotion activity (-37.8% of distance travelled, P < 0.05), motor coordination (-88.9% latency of falls on rotarod, P < 0.05) and muscle strength (-25.1%, P < 0.05). These defects were associated with reduction in soleus (-51.5%, P < 0.05) and EDL (-42.5%, P < 0.05) weight, smaller area of muscle fibres, and with lower tibia weight (-38%, P < 0.05). In muscles from rats submitted to CP, changes in the expression levels of several genes related to muscle development and neuromuscular junctions were similar to those found in wrist muscle of children with CP (increased mRNA levels of Igfbp5, Kcnn3, Gdf8, and MyH4 and decreased expression of Myog, Ucp2 and Lpl). Compared with vehicle-treated CP rats, FGF19 administration improved locomotor activity (+53.2%, P < 0.05) and muscle strength (+25.7%, P < 0.05), and increased tibia weight (+13.8%, P < 0.05) and soleus and EDL muscle weight (+28.6% and +27.3%, respectively, P < 0.05). In addition, it reduced a number of very small fibres in both muscles (P < 0.05). Finally, gene expression analyses revealed that FGF19 might counteract the immature state of skeletal muscles induced by CP. CONCLUSIONS: These results demonstrate that pharmacological intervention with recombinant FGF19 could restore musculoskeletal and locomotor dysfunction in an experimental CP model, suggesting that FGF19 may represent a potential therapeutic strategy to combat the locomotor disorders associated with CP.


Assuntos
Paralisia Cerebral , Animais , Paralisia Cerebral/tratamento farmacológico , Feminino , Fatores de Crescimento de Fibroblastos , Locomoção , Masculino , Camundongos , Músculo Esquelético , Gravidez , Ratos , Ratos Wistar , Canais de Potássio Ativados por Cálcio de Condutância Baixa
9.
Cells ; 10(10)2021 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-34685625

RESUMO

The PD-L1/PD-1 immune checkpoint axis is the strongest T cell exhaustion inducer. As immune dysfunction occurs during obesity, we analyzed the impact of obesity on PD-L1/PD-1 expression in white adipose tissue (WAT) in mice and in human white adipocytes. We found that PD-L1 was overexpressed in WAT of diet-induced obese mice and was associated with increased expression of PD-1 in visceral but not subcutaneous WAT. Human in vitro cocultures with adipose-tissue-derived mesenchymal stem cells (ASC) and mononuclear cells demonstrated that the presence of ASC harvested from obese WAT (i) enhanced PD-L1 expression as compared with ASC from lean WAT, (ii) decreased Th1 cell cytokine secretion, and (iii) resulted in decreased cytolytic activity towards adipocytes. Moreover, (iv) the implication of PD-L1 in obese ASC-mediated T cell dysfunction was demonstrated through PD-L1 blockade. Finally, (v) conditioned media gathered from these cocultures enhanced PD-L1 expression in freshly differentiated adipocytes, depending on IFNγ. Altogether, our results suggest that PD-L1 is overexpressed in the WAT of obese individuals during IFNγ secretion, leading to T cell dysfunction and notably reduced cytolytic activity. Such a mechanism could shed light on why adipose-tissue-infiltrating viruses, such as SARS-CoV-2, can worsen disease in obese individuals.


Assuntos
Tecido Adiposo Branco/metabolismo , Antígeno B7-H1/biossíntese , Regulação da Expressão Gênica , Células-Tronco Mesenquimais/citologia , Obesidade/metabolismo , Linfócitos T/imunologia , Animais , COVID-19/imunologia , Diferenciação Celular , Técnicas de Cocultura , Humanos , Imuno-Histoquímica , Inflamação , Interferon gama/metabolismo , Leucócitos Mononucleares/citologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/imunologia , SARS-CoV-2 , Linfócitos T/citologia
10.
Artigo em Inglês | MEDLINE | ID: mdl-34444432

RESUMO

Postmenopausal women represent a vulnerable population towards endocrine disruptors due to hormonal deficit. We previously demonstrated that chronic exposure of ovariectomized C57Bl6/J mice fed a high-fat, high-sucrose diet to a low-dose mixture of chemicals with one dioxin, one polychlorobiphenyl, one phthalate, and bisphenol A triggered metabolic alterations in the liver but the intestine was not explored. Yet, the gastrointestinal tract is the main route by which pollutants enter the body. In the present study, we investigated the metabolic consequences of ovarian withdrawal and E2 replacement on the various gut segments along with investigating the impact of the mixture of pollutants. We showed that genes encoding estrogen receptors (Esr1, Gper1 not Esr2), xenobiotic processing genes (e.g., Cyp3a11, Cyp2b10), and genes related to gut homeostasis in the jejunum (e.g., Cd36, Got2, Mmp7) and to bile acid biosynthesis in the gut (e.g., Fgf15, Slc10a2) and liver (e.g., Abcb11, Slc10a1) were under estrogen regulation. Exposure to pollutants mimicked some of the effects of E2 replacement, particularly in the ileum (e.g., Esr1, Nr1c1) suggesting that the mixture had estrogen-mimetic activities. The present findings have important implications for the understanding of estrogen-dependent metabolic alterations with regards to situations of loss of estrogens as observed after menopause.


Assuntos
Poluentes Ambientais , Animais , Dieta Hiperlipídica , Poluentes Ambientais/toxicidade , Estradiol , Estrogênios , Feminino , Humanos , Fígado , Camundongos , Camundongos Endogâmicos C57BL , Ovariectomia
11.
FASEB J ; 35(6): e21650, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33993539

RESUMO

Mesenchymal stem cells from healthy adipose tissue are adipocytes progenitors with immunosuppressive potential that are used for years in cell therapy. Whether adipose stem cells (ASC) may prevent inflammation in early obesity is not known. To address this question, we performed a kinetic study of high-fat (HF) diet induced obesity in mice to follow the immune regulating functions of adipose stem cells (ASC) isolated from the subcutaneous (SAT) and the visceral adipose tissue (VAT). Our results show that, early in obesity and before inflammation was detected, HF diet durably and differently activated ASC from SAT and VAT. Subcutaneous ASC from HF-fed mice strongly inhibited the proliferation of activated T lymphocytes, whereas visceral ASC selectively inhibited TNFα expression by macrophages and simultaneously released higher concentrations of IL6. These depot specific differences may contribute to the low-grade inflammation that develops with obesity in VAT while inflammation in SAT is delayed. The mechanisms involved differ from those already described for naïve cells activation with inflammatory cytokines and probably engaged metabolic activation. These results evidence that adipose stem cells are metabolic sensors acquiring an obesity-primed immunocompetent state in answer to depot-specific intrinsic features with overnutrition, placing these cells ahead of inflammation in the local dialog with immune cells.


Assuntos
Tecido Adiposo/imunologia , Inflamação/imunologia , Gordura Intra-Abdominal/imunologia , Células-Tronco Mesenquimais/imunologia , Obesidade/fisiopatologia , Gordura Subcutânea/imunologia , Linfócitos T/imunologia , Tecido Adiposo/patologia , Animais , Inflamação/patologia , Gordura Intra-Abdominal/patologia , Ativação Linfocitária , Masculino , Células-Tronco Mesenquimais/patologia , Camundongos , Camundongos Endogâmicos C57BL , Gordura Subcutânea/patologia , Linfócitos T/patologia
12.
J Dev Orig Health Dis ; 12(3): 505-512, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-32799949

RESUMO

Maternal protein restriction and physical activity can affect the interaction mother-placenta-fetus. This study quantified the gene expression of brain-derived neurotrophic factor (BDNF), neurothrophin 4, tyrosine kinase receptor B (TrkB/NTRK2), insulin-like growth factor (IGF-1), and insulin-like growth factor receptor (IGF-1r) in the different areas of mother's brain (hypothalamus, hippocampus, and cortex), placenta, and fetus' brain of rats. Female Wistar rats (n = 20) were housed in cages containing a running wheel for 4 weeks before gestation. According to the distance spontaneously traveled daily, rats were classified as inactive or active. During gestation, on continued access to the running wheel, active and inactive groups were randomized to receive normoprotein diet (18% protein) or a low-protein (LP) diet (8% protein). At day 20 of gestation, gene expression of neurotrophic factors was analyzed by quantitative polymerase chain reaction in different brain areas and the placenta. Dams submitted to a LP diet during gestation showed upregulation of IGF-1r and BDNF messenger RNA in the hypothalamus, IGF-1r and NTRK2 in the hippocampus, and BDNF, NTRK2, IGF-1 and IGF-1r in the cortex. In the placenta, there was a downregulation of IGF-1. In the brain of pups from mothers on LP diet, IGF-1r and NTRK2 were downregulated. Voluntary physical activity attenuated the effects of LP diet on IGF-1r in the hypothalamus, IGF-1r and NTRK2 in the hippocampus, IGF-1 in the placenta, and NTRK2 in the fetus' brain. In conclusion, both maternal protein restriction and spontaneous physical activity influence the gene expression of BDNF, NTRK2, IGF-1, and IGF-1r, with spontaneous physical activity being able to normalize in part the defects caused by protein restriction during pregnancy.


Assuntos
Encéfalo/metabolismo , Dieta com Restrição de Proteínas , Fenômenos Fisiológicos da Nutrição Materna , Fatores de Crescimento Neural/metabolismo , Placenta/metabolismo , Animais , Feminino , Masculino , Plasticidade Neuronal , Condicionamento Físico Animal , Placentação , Gravidez , Ratos Wistar
13.
Life Sci ; 263: 118574, 2020 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-33049280

RESUMO

AIMS: We investigated the involvement of the renin angiotensin system (RAS) on the cardiorespiratory control in rats from dams fed with a low-protein diet. MAIN METHODS: Male offspring were obtained from dams fed a normoprotein diet (NP, 17% casein) and low-protein diet (LP, 8% casein) during pregnancy and lactation. Direct measurements of arterial pressure (AP), heart rate (HR) and respiratory frequency (RF) were recorded in awake 90-day-old at resting and after losartan potassium through either intracerebroventricular (ICV) microinjections or intravenous (IV) administration. Cardiovascular variability was evaluated by spectral analysis. Peripheral chemoreflex sensitivity was assessed through the potassium cyanide (KCN; 40 µg/0.1 ml/rat, IV). Gene expression was evaluated by qPCR, and MAPK (Mitogen Activated Protein Kinase) expression was evaluated by western blot. KEY FINDINGS: The LP offspring had higher mean AP (MAP) and RF than NP offspring. In the spectral analysis, the LP rats also showed higher low frequency of systolic AP (NP: 2.7 ± 0.3 vs. LP: 5.0 ± 1.0 mmHg). After ICV losartan, MAP and RF in LP rats remained higher than those in NP rats, but without changes in HR. The peripheral chemoreflex was similar between the groups. LP group had lower gene expression of Rac1 (Ras-related C3 botulinum toxin substrate 1) (NP: 1.13 ± 0.06 vs. LP: 0.88 ± 0.08). Peripherally, LP rats had larger delta of MAP after IV losartan (NP: -9.8 ± 2 vs. LP: -23 ± 6 mmHg), without changes in HR and RF. SIGNIFICANCE: In rats, the RAS participates peripherally, but not centrally, in the maintenance of arterial hypertension in male offspring induced by maternal protein restriction.


Assuntos
Dieta com Restrição de Proteínas/efeitos adversos , Hipertensão/fisiopatologia , Fenômenos Fisiológicos da Nutrição Materna/fisiologia , Efeitos Tardios da Exposição Pré-Natal/fisiopatologia , Sistema Renina-Angiotensina/fisiologia , Animais , Pressão Arterial/efeitos dos fármacos , Pressão Arterial/fisiologia , Feminino , Frequência Cardíaca/efeitos dos fármacos , Frequência Cardíaca/fisiologia , Lactação/fisiologia , Losartan/farmacologia , Masculino , Gravidez , Ratos , Ratos Wistar , Taxa Respiratória/efeitos dos fármacos , Taxa Respiratória/fisiologia
14.
World J Stem Cells ; 12(7): 621-632, 2020 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-32843918

RESUMO

BACKGROUND: Advanced glycation end products (AGE) are a marker of various diseases including diabetes, in which they participate to vascular damages such as retinopathy, nephropathy and coronaropathy. Besides those vascular complications, AGE are involved in altered metabolism in many tissues, including adipose tissue (AT) where they contribute to reduced glucose uptake and attenuation of insulin sensitivity. AGE are known to contribute to type 1 diabetes (T1D) through promotion of interleukin (IL)-17 secreting T helper (Th17) cells. AIM: To investigate whether lean adipose-derived stem cells (ASC) could be able to induce IL-17A secretion, with the help of AGE. METHODS: As we have recently demonstrated that ASC are involved in Th17 cell promotion when they are harvested from obese AT, we used the same co-culture model to measure the impact of glycated human serum albumin (G-HSA) on human lean ASC interacting with blood mononuclear cells. IL-17A and pro-inflammatory cytokine secretion were measured by ELISA. Receptor of AGE (RAGE) together with intercellular adhesion molecule 1 (ICAM-1), human leukocyte Antigen (HLA)-DR, cluster of differentiation (CD) 41, and CD62P surface expressions were measured by cytofluorometry. Anti-RAGE specific monoclonal antibody was added to co-cultures in order to evaluate the role of RAGE in IL-17A production. RESULTS: Results showed that whereas 1% G-HSA only weakly potentiated the production of IL-17A by T cells interacting with ASC harvested from obese subjects, it markedly increased IL-17A, but also interferon gamma and tumor necrosis factor alpha production in the presence of ASC harvested from lean individuals. This was associated with increased expression of RAGE and HLA-DR molecule by co-cultured cells. Moreover, RAGE blockade experiments demonstrated RAGE specific involvement in lean ASC-mediated Th-17 cell activation. Finally, platelet aggregation and ICAM-1, which are known to be induced by AGE, were not involved in these processes. CONCLUSION: Thus, our results demonstrated that G-HSA potentiated lean ASC-mediated IL-17A production in AT, suggesting a new mechanism by which AGE could contribute to T1D pathophysiology.

15.
Cytokine ; 126: 154865, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31629101

RESUMO

BACKGROUND: Adipose tissue is infiltrated with various immune cells, including Th17 lymphocytes and monocytes/macrophages, in obese individuals. We have previously demonstrated the role of obese adipose-derived stem cells (ob-ASC) and adipocytes (AD) in the mediation of inflammation through promotion of Th17 cells and activation of monocytes. Such an inflammation resulted in impaired ob-ASC adipogenesis and AD insulin response. In the present study, we investigated the role of IL-17A in the impairment of these functions. METHODS: With this aim, we used Secukinumab, a potent human anti-IL17A monoclonal antibody which has been approved for the treatment of some IL-17A related inflammatory diseases, notably Psoriasis. This antibody was added or not to phytohemagglutinin A-activated co-cultures of ob-ASC and mononuclear cells. The conditioning media of those co-cultures were harvested and added to AD ongoing differentiation from ob-ASC. Adipogenesis, insulin sensitivity and secretion of inflammatory cytokines were then measured using qRT-PCR, Western blots and ELISAs, respectively. RESULTS: Surprisingly, we did not observe any direct effect of IL-17A on ob-ASC adipogenesis, despite sensitivity of ob-ASC to IL-17A. Moreover, IL-17A blockade, with the help of Secukinumab, did not lead to the recovery of adipogenesis and insulin response, when these functions were impaired by the presence of an inflammatory conditioning medium. However, the up-regulation of IL6 and IL1B mRNA expression by AD submitted to inflammatory conditioning medium was inhibited in the presence of Secukinumab, which indicates that IL-17A may play a role in the propagation of inflammation towards AD. IN CONCLUSION: we show herein that IL-17A does not play a major role in the impairment of adipogenesis and/or insulin resistance mediated by an inflammatory environment, but contributes to the propagation of inflammation in human obese adipose tissues. This suggests a beneficial effect of anti-IL17A mAb in inflammatory pathologies, where obesity contributes to poorer response to biologic treatments.


Assuntos
Adipócitos/efeitos dos fármacos , Adipogenia/efeitos dos fármacos , Anticorpos Monoclonais Humanizados/farmacologia , Interleucina-17/antagonistas & inibidores , Células-Tronco Mesenquimais/efeitos dos fármacos , Obesidade/metabolismo , Adipócitos/metabolismo , Adipogenia/genética , Tecido Adiposo , Técnicas de Cocultura , Meios de Cultivo Condicionados/farmacologia , Citocinas/genética , Citocinas/metabolismo , Humanos , Inflamação/genética , Inflamação/metabolismo , Resistência à Insulina/genética , Interleucina-17/imunologia , Interleucina-17/metabolismo , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Interleucina-6/genética , Interleucina-6/metabolismo , Células-Tronco Mesenquimais/metabolismo , Monócitos/efeitos dos fármacos , Obesidade/genética , Fito-Hemaglutininas/farmacologia
16.
J Nutr Biochem ; 72: 108211, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31473509

RESUMO

Postmenopausal women may be at particular risk when exposed to chemicals especially endocrine disruptors because of hormonal deficit. To get more insight, ovariectomized C57Bl6/J mice fed a high-fat high-sucrose diet were chronically exposed from 5 to 20 weeks of age to a low-dose mixture of chemicals with one dioxin, one polychlorobiphenyl, one phthalate and bisphenol A. Part of the mice received as well E2 implants to explore the potential estrogenic dependency of the metabolic alterations. With this model, estrogen loss resulted in glucose but not lipid metabolism impairment, and E2 replacement normalized the enhanced body and fat pad weight, and the glucose intolerance and insulin resistance linked to ovariectomy. It also altered cholesterol metabolism in the liver concurrently with enhanced estrogen receptor Esr1 mRNA level. In addition, fat depots responded differently to estrogen withdrawal (e.g., selective mRNA enhancement of adipogenesis markers in subcutaneous and of inflammation in visceral fat pads) and replacement challenges. Importantly, the pollutant mixture impacted lipid deposition and mRNA expression of several genes related to lipid metabolism but not Esr1 in the liver. Adiponectin levels were altered as well. In addition, the mRNA abundance of the various estrogen receptors was regionally impacted in fat tissues. Besides, xenobiotic processing genes did not change in response to the pollutant mixture in the liver. The present findings bring new light on estrogen-dependent metabolic alterations with regards to situations of loss of estrogens as observed after menopause.


Assuntos
Dieta Hiperlipídica/efeitos adversos , Poluentes Ambientais/toxicidade , Estradiol/administração & dosagem , Gordura Intra-Abdominal/efeitos dos fármacos , Gordura Subcutânea/efeitos dos fármacos , Animais , Estradiol/farmacologia , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Glucose/metabolismo , Gordura Intra-Abdominal/metabolismo , Metabolismo dos Lipídeos/efeitos dos fármacos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Camundongos Endogâmicos C57BL , Ovariectomia , Gordura Subcutânea/metabolismo , Sacarose/administração & dosagem , Sacarose/efeitos adversos , Testes de Toxicidade Crônica , Xenobióticos/farmacocinética
17.
Chemosphere ; 220: 1187-1199, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30722647

RESUMO

Excessive consumption of industrialized food and beverages is a major etiologic factor in the epidemics of obesity and associated metabolic diseases because these products are rich in fat and sugar. In addition, they contain food contact materials and environmental pollutants identified as metabolism disrupting chemicals. To evaluate the metabolic impact of these dietary threats (individually or combined), we used a male mouse model of chronic exposure to a mixture of low-dose archetypal food-contaminating chemicals that was added in standard or high-fat, high-sucrose (HFHS) diet. Specifically, the mixture contained bisphenol A, diethylhexylphthalate, 2,3,7,8-tetrachlorodibenzo-p-dioxine and polychlorinated biphenyl 153. Exposure lasted from 5 to 20 weeks of age. Metabolic exploration was conducted setting the basis of candidate gene expression mRNA analyses in liver, jejunum and adipose tissue depots from 20 week-old mice. Strong metabolic deleterious effects of the HFHS diet were demonstrated in line with obesity-associated metabolic features and insulin resistance. Pollutant exposure resulted in significant changes on plasma triglyceride levels and on the expression levels of genes mainly encoding xenobiotic processing in jejunum; estrogen receptors, regulators of lipoprotein lipase and inflammatory markers in jejunum and adipose tissues as well as adipogenesis markers. Importantly, the impact of pollutants was principally evidenced under standard diet. In addition, depending on nutritional conditions and on the metabolic tissue considered, the impact of pollutants could mimic or oppose the HFHS effects. Collectively, the present study extends the cocktail effect concept of a low-dosed pollutant mixture and originally points to tissue-specificity responsiveness especially in jejunum and adipose tissues.


Assuntos
Dieta Hiperlipídica/efeitos adversos , Exposição Ambiental/efeitos adversos , Poluentes Ambientais/efeitos adversos , Sacarose/metabolismo , Tecido Adiposo/metabolismo , Animais , Perfilação da Expressão Gênica , Jejuno/metabolismo , Masculino , Camundongos , Obesidade/metabolismo , Distribuição Tecidual
18.
Sci Rep ; 9(1): 742, 2019 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-30679586

RESUMO

Butyrate and R-ß-hydroxybutyrate are two related short chain fatty acids naturally found in mammals. Butyrate, produced by enteric butyric bacteria, is present at millimolar concentrations in the gastrointestinal tract and at lower levels in blood; R-ß-hydroxybutyrate, the main ketone body, produced by the liver during fasting can reach millimolar concentrations in the circulation. Both molecules have been shown to be histone deacetylase (HDAC) inhibitors, and their administration has been associated to an improved metabolic profile and better cellular oxidative status, with butyrate inducing PGC1α and fatty acid oxidation and R-ß-hydroxybutyrate upregulating oxidative stress resistance factors FOXO3A and MT2 in mouse kidney. Because of the chemical and functional similarity between the two molecules, we compared here their impact on multiple cell types, evaluating i) histone acetylation and hydroxybutyrylation levels by immunoblotting, ii) transcriptional regulation of metabolic and inflammatory genes by quantitative PCR and iii) cytokine secretion profiles using proteome profiling array analysis. We confirm that butyrate is a strong HDAC inhibitor, a characteristic we could not identify in R-ß-hydroxybutyrate in vivo nor in vitro. Butyrate had an extensive impact on gene transcription in rat myotubes, upregulating PGC1α, CPT1b, mitochondrial sirtuins (SIRT3-5), and the mitochondrial anti-oxidative genes SOD2 and catalase. In endothelial cells, butyrate suppressed gene expression and LPS-induced secretion of several pro-inflammatory genes, while R-ß-hydroxybutyrate acted as a slightly pro-inflammatory molecule. Our observations indicate that butyrate induces transcriptional changes to a higher extent than R-ß-hydroxybutyrate in rat myotubes and endothelial cells, in keep with its HDAC inhibitory activity. Also, in contrast with previous reports, R-ß-hydroxybutyrate, while inducing histone ß-hydroxybutyrylation, did not display a readily detectable HDAC inhibitor activity and exerted a slight pro-inflammatory action on endothelial cells.


Assuntos
Anti-Inflamatórios/farmacologia , Butiratos/farmacologia , Inibidores de Histona Desacetilases/farmacologia , Inflamação/tratamento farmacológico , Acetilação/efeitos dos fármacos , Animais , Células Endoteliais/efeitos dos fármacos , Proteína Forkhead Box O3/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Histona Desacetilases/efeitos dos fármacos , Humanos , Hidroxibutiratos/farmacologia , Metalotioneína/genética , Camundongos , Estresse Oxidativo/efeitos dos fármacos , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Ratos , Transcrição Gênica/efeitos dos fármacos
19.
J Clin Endocrinol Metab ; 104(3): 688-696, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30260393

RESUMO

Context: Iron overload has been associated with greater adipose tissue (AT) depots. We retrospectively studied the potential interactions between iron and AT during an experimental overfeeding in participants without obesity. Methods: Twenty-six participants (mean body mass index ± SD, 24.7 ± 3.1 kg/m2) underwent a 56-day overfeeding (+760 kcal/d). Serum iron biomarkers (ELISA), subcutaneous AT (SAT) gene expression, and abdominal AT distribution assessed by MRI were analyzed at the beginning and the end of the intervention. Results: Before intervention: SAT mRNA expression of the iron transporter transferrin (Tf) was positively correlated with the expression of genes related to lipogenesis (lipin 1, ACSL1) and lipid storage (SCD). SAT expression of the ferritin light chain (FTL) gene, encoding ferritin (FT), an intracellular iron storage protein, was negatively correlated to SREBF1, a gene related to lipogenesis. Serum FT (mean, 92 ± 57 ng/mL) was negatively correlated with the expression of SAT genes linked to lipid storage (SCD, DGAT2) and to lipogenesis (SREBF1, ACSL1). After intervention: Overfeeding led to a 2.3 ± 1.3-kg weight gain. In parallel to increased expression of lipid storage-related genes (mitoNEET, SCD, DGAT2, SREBF1), SAT Tf, SLC40A1 (encoding ferroportin 1, a membrane iron export channel) and hephaestin mRNA levels increased, whereas SAT FTL mRNA decreased, suggesting increased AT iron requirement. Serum FT decreased to 67 ± 43 ng/mL. However, no significant associations between serum iron biomarkers and AT distribution or expansion were observed. Conclusion: In healthy men, iron metabolism gene expression in SAT is associated with lipid storage and lipogenesis genes expression and is modulated during a 56-day overfeeding diet.


Assuntos
Adiposidade/fisiologia , Ferro/metabolismo , Lipogênese/fisiologia , Hipernutrição/fisiopatologia , Gordura Subcutânea/metabolismo , Adulto , Apoferritinas/sangue , Apoferritinas/metabolismo , Biomarcadores/sangue , Proteínas de Transporte de Cátions/metabolismo , Regulação da Expressão Gênica/fisiologia , Voluntários Saudáveis , Humanos , Imageamento por Ressonância Magnética , Masculino , Proteínas de Membrana/metabolismo , Hipernutrição/etiologia , Estudos Retrospectivos , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Gordura Subcutânea/diagnóstico por imagem , Aumento de Peso/fisiologia , Adulto Jovem
20.
Environ Toxicol Pharmacol ; 57: 34-40, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29175711

RESUMO

We recently hypothesized that a mixture of low-dosed dioxin, polychlorobiphenyl, phthalate and bisphenol may induce estrogeno-mimetic activities in a model of lifelong-exposed female mice. Herein, we evaluated the impact of this mixture in estrogen deficiency conditions. Based on the protective effects of estrogens against metabolic disorders, we reasoned that exposure to pollutants should attenuate the deleterious metabolic effects induced by ovariectomy. In line with the hypothesis, exposure to pollutants was found to reduce the impact of ovariectomy on glucose intolerance and insulin resistance, to enhance the expression levels of the hepatic estrogen receptor α and to attenuate the ovariectomy-induced enhancement of the chemokine MCP-1/CCL2 considered as an indicator of estrogen signalling. Because of the very low doses of pollutants used in mixture, these findings may have strong implications in terms of understanding the potential role of environmental contaminants in the development of metabolic diseases, specifically in females during menopausal transition.


Assuntos
Poluentes Ambientais/farmacologia , Estrogênios/farmacologia , Ovariectomia , Tecido Adiposo/efeitos dos fármacos , Tecido Adiposo/metabolismo , Animais , Compostos Benzidrílicos/farmacologia , Glicemia/análise , Quimiocina CCL2/metabolismo , Dietilexilftalato/farmacologia , Receptor alfa de Estrogênio , Feminino , Insulina/sangue , Resistência à Insulina , Fígado/efeitos dos fármacos , Fígado/metabolismo , Camundongos Endogâmicos C57BL , Fenóis/farmacologia , Bifenilos Policlorados/farmacologia , Dibenzodioxinas Policloradas/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA