Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cardiovasc Res ; 120(8): 819-838, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38696700

RESUMO

Despite the emergence of novel diagnostic, pharmacological, interventional, and prevention strategies, atherosclerotic cardiovascular disease remains a significant cause of morbidity and mortality. Nanoparticle (NP)-based platforms encompass diverse imaging, delivery, and pharmacological properties that provide novel opportunities for refining diagnostic and therapeutic interventions for atherosclerosis at the cellular and molecular levels. Macrophages play a critical role in atherosclerosis and therefore represent an important disease-related diagnostic and therapeutic target, especially given their inherent ability for passive and active NP uptake. In this review, we discuss an array of inorganic, carbon-based, and lipid-based NPs that provide magnetic, radiographic, and fluorescent imaging capabilities for a range of highly promising research and clinical applications in atherosclerosis. We discuss the design of NPs that target a range of macrophage-related functions such as lipoprotein oxidation, cholesterol efflux, vascular inflammation, and defective efferocytosis. We also provide examples of NP systems that were developed for other pathologies such as cancer and highlight their potential for repurposing in cardiovascular disease. Finally, we discuss the current state of play and the future of theranostic NPs. Whilst this is not without its challenges, the array of multifunctional capabilities that are possible in NP design ensures they will be part of the next frontier of exciting new therapies that simultaneously improve the accuracy of plaque diagnosis and more effectively reduce atherosclerosis with limited side effects.


Assuntos
Aterosclerose , Macrófagos , Nanopartículas Multifuncionais , Placa Aterosclerótica , Humanos , Aterosclerose/metabolismo , Aterosclerose/patologia , Aterosclerose/diagnóstico , Aterosclerose/prevenção & controle , Animais , Macrófagos/metabolismo , Nanopartículas Multifuncionais/metabolismo , Sistemas de Liberação de Fármacos por Nanopartículas , Nanomedicina Teranóstica , Valor Preditivo dos Testes
2.
Reprod Toxicol ; 49: 86-100, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25088243

RESUMO

Pregnancy is a unique physiological state, in which C60 fullerene is reported to be distributed in both maternal and fetal tissues. Tissue distribution of C60 differs between pregnant and non-pregnant states, presumably due to functional changes in vasculature during pregnancy. We hypothesized that polyvinylpyrrolidone (PVP) formulated C60 (C60/PVP) increases vascular tissue contractility during pregnancy by increasing Rho-kinase activity. C60/PVP was administered intravenously to pregnant and non-pregnant female Sprague Dawley rats. Vascular responses were assessed using wire myography 24h post-exposure. Increased stress generation was observed in uterine artery, thoracic aorta and umbilical vein. Rho-Rho-kinase mediated force maintenance was increased in arterial segments from C60/PVP exposed pregnant rats when compared to PVP exposed rats. Our findings suggest that intravenous exposure to C60/PVP during pregnancy increases vascular tissue contractility of the uterine artery through elements of Rho-Rho-kinase signaling during late stages of pregnancy.


Assuntos
Fulerenos/toxicidade , Contração Muscular/efeitos dos fármacos , Músculo Liso Vascular/efeitos dos fármacos , Quinases Associadas a rho/efeitos dos fármacos , Animais , Pressão Sanguínea/efeitos dos fármacos , Ecocardiografia , Feminino , Miografia , Povidona/metabolismo , Gravidez , Ratos Sprague-Dawley , Quinases Associadas a rho/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA