Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(16)2024 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-39201421

RESUMO

Vitronectin is a glycoprotein present in plasma and the extracellular matrix that is implicated in cell migration. The high amount of vitronectin found in neuroblastoma biopsies has been associated with poor prognosis. Moreover, increased vitronectin levels have been described in the plasma of patients with different cancers. Our aim was to assess vitronectin as a potential circulating biomarker of neuroblastoma prognosis. Vitronectin concentration was quantified using ELISA in culture media of four neuroblastoma cell lines grown in a monolayer and in 3D models, and in the plasma of 114 neuroblastoma patients. Three of the neuroblastoma cell lines secreted vitronectin to culture media when cultured in a monolayer and 3D models. Vitronectin release was higher by neuroblastoma cells cultured in 3D models than in the monolayer and was still elevated when cells were grown in 3D scaffolds with cross-linked vitronectin. Vitronectin secretion occurred independently of cell numbers in cultures. Its concentration in the plasma of neuroblastoma patients ranged between 52.4 and 870 µg/mL (median, 218 µg/mL). A ROC curve was used to establish a cutoff of 361 µg/mL, above which patients over 18 months old had worse prognosis (p = 0.0018). Vitronectin could be considered a new plasma prognostic biomarker in neuroblastoma and warrants confirmation in collaborative studies. Drugs inhibiting vitronectin interactions with cells and/or the extracellular matrix could represent a significant improvement in survival for neuroblastoma patients.


Assuntos
Biomarcadores Tumorais , Neuroblastoma , Vitronectina , Humanos , Vitronectina/sangue , Vitronectina/metabolismo , Neuroblastoma/sangue , Neuroblastoma/patologia , Neuroblastoma/metabolismo , Biomarcadores Tumorais/sangue , Prognóstico , Feminino , Linhagem Celular Tumoral , Lactente , Masculino , Pré-Escolar , Meios de Cultura/química , Criança
2.
Biomedicines ; 9(7)2021 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-34356862

RESUMO

The study of cancer biology should be based around a comprehensive vision of the entire tumor ecosystem, considering the functional, bioenergetic and metabolic state of tumor cells and those of their microenvironment, and placing particular importance on immune system cells. Enhanced understanding of the molecular bases that give rise to alterations of pathways related to tumor development can open up new therapeutic intervention opportunities, such as metabolic regulation applied to immunotherapy. This review outlines the role of various oncometabolites and immunometabolites, such as TCA intermediates, in shaping pro/anti-inflammatory activity of immune cells such as MDSCs, T lymphocytes, TAMs and DCs in cancer. We also discuss the extraordinary plasticity of the immune response and its implication in immunotherapy efficacy, and highlight different therapeutic intervention possibilities based on controlling the balanced systems of specific metabolites with antagonistic functions.

3.
Metabolites ; 11(5)2021 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-33922558

RESUMO

A comprehensive view of cell metabolism provides a new vision of cancer, conceptualized as tissue with cellular-altered metabolism and energetic dysfunction, which can shed light on pathophysiological mechanisms. Cancer is now considered a heterogeneous ecosystem, formed by tumor cells and the microenvironment, which is molecularly, phenotypically, and metabolically reprogrammable. A wealth of evidence confirms metabolic reprogramming activity as the minimum common denominator of cancer, grouping together a wide variety of aberrations that can affect any of the different metabolic pathways involved in cell physiology. This forms the basis for a new proposed classification of cancer according to the altered metabolic pathway(s) and degree of energy dysfunction. Enhanced understanding of the metabolic reprogramming pathways of fatty acids, amino acids, carbohydrates, hypoxia, and acidosis can bring about new therapeutic intervention possibilities from a metabolic perspective of cancer.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA