Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cell Death Dis ; 15(9): 677, 2024 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-39285161

RESUMO

Myeloid cells are the first line of defence against pathogens. Mitochondrial apoptosis signalling is a crucial regulator of myeloid cell lifespan and modulates the function of myeloid cells. The anti-apoptotic protein BCL-2-family protein BCL2A1/A1/BFL-1 is strongly upregulated in inflammation in macrophages. We analysed the contribution of A1 to apoptosis regulation in a conditional system of in vitro differentiation of murine macrophages from immortalised progenitors. We disabled the expression of A1 by targeting all murine A1 isoforms in the genome. Specific inhibitors were used to inactivate other anti-apoptotic proteins. Macrophage progenitor survival mainly depended on the anti-apoptotic proteins MCL-1, BCL-XL and A1 but not BCL-2. Deletion of A1 on its own had little effect on progenitor cell survival but was sensitised to cell death induction when BCL-XL or MCL-1 was neutralised. In progenitors, A1 was required for survival in the presence of the inflammatory stimulus LPS. Differentiated macrophages were resistant to inhibition of single anti-apoptotic proteins, but A1 was required to protect macrophages against inhibition of either BCL-XL or MCL-1; BCL-2 only had a minor role in these cells. Cell death by neutralisation of anti-apoptotic proteins completely depended on BAX with a small contribution of BAK only in progenitors in the presence of LPS. A1 and NOXA appeared to stabilise each other at the posttranscriptional level suggesting direct binding. Co-immunoprecipitation experiments showed the binding of A1 to NOXA and BIM. Interaction between A1 and Noxa may indirectly prevent neutralisation and destabilization of MCL-1. Our findings suggest a unique role for A1 as a modulator of survival in the macrophage lineage in concert with MCL-1 and BCL-XL, especially in a pro-inflammatory environment.


Assuntos
Apoptose , Diferenciação Celular , Sobrevivência Celular , Macrófagos , Proteína de Sequência 1 de Leucemia de Células Mieloides , Proteínas Proto-Oncogênicas c-bcl-2 , Proteína bcl-X , Animais , Proteína bcl-X/metabolismo , Macrófagos/metabolismo , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Camundongos , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Antígenos de Histocompatibilidade Menor/metabolismo , Antígenos de Histocompatibilidade Menor/genética , Lipopolissacarídeos/farmacologia , Células Mieloides/metabolismo
2.
Cell Death Differ ; 29(11): 2218-2232, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35505004

RESUMO

The bacterium Helicobacter pylori induces gastric inflammation and predisposes to cancer. H. pylori-infected epithelial cells secrete cytokines and chemokines and undergo DNA-damage. We show that the host cell's mitochondrial apoptosis system contributes to cytokine secretion and DNA-damage in the absence of cell death. H. pylori induced secretion of cytokines/chemokines from epithelial cells, dependent on the mitochondrial apoptosis machinery. A signalling step was identified in the release of mitochondrial Smac/DIABLO, which was required for alternative NF-κB-activation and contributed to chemokine secretion. The bacterial cag-pathogenicity island and bacterial muropeptide triggered mitochondrial host cell signals through the pattern recognition receptor NOD1. H. pylori-induced DNA-damage depended on mitochondrial apoptosis signals and the caspase-activated DNAse. In biopsies from H. pylori-positive patients, we observed a correlation of Smac-levels and inflammation. Non-apoptotic cells in these samples showed evidence of caspase-3-activation, correlating with phosphorylation of the DNA-damage response kinase ATM. Thus, H. pylori activates the mitochondrial apoptosis pathway to a sub-lethal level. During infection, Smac has a cytosolic, pro-inflammatory role in the absence of apoptosis. Further, DNA-damage through sub-lethal mitochondrial signals is likely to contribute to mutagenesis and cancer development.


Assuntos
Infecções por Helicobacter , Helicobacter pylori , Humanos , NF-kappa B/metabolismo , Infecções por Helicobacter/metabolismo , Infecções por Helicobacter/patologia , Mitocôndrias/metabolismo , Células Epiteliais/metabolismo , Quimiocinas/metabolismo , DNA/metabolismo , Inflamação/metabolismo , Mucosa Gástrica/metabolismo , Mucosa Gástrica/microbiologia , Mucosa Gástrica/patologia
3.
Cell Death Dis ; 12(11): 1011, 2021 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-34711816

RESUMO

Regulated cell death frequently occurs upon infection by intracellular pathogens, and extent and regulation is often cell-type-specific. We aimed to identify the cell death-signaling pathways triggered in macrophages by infection with modified vaccinia virus Ankara (MVA), an attenuated strain of vaccinia virus used in vaccination. While most target cells seem to be protected by antiapoptotic proteins encoded in the MVA genome, macrophages die when infected with MVA. We targeted key signaling components of specific cell death-pathways and pattern recognition-pathways using genome editing and small molecule inhibitors in an in vitro murine macrophage differentiation model. Upon infection with MVA, we observed activation of mitochondrial and death-receptor-induced apoptosis-pathways as well as the necroptosis-pathway. Inhibition of individual pathways had a little protective effect but led to compensatory death through the other pathways. In the absence of mitochondrial apoptosis, autocrine/paracrine TNF-mediated apoptosis and, in the absence of caspase-activity, necroptosis occurred. TNF-induction depended on the signaling molecule STING, and MAVS and ZBP1 contributed to MVA-induced apoptosis. The mode of cell death had a substantial impact on the cytokine response of infected cells, indicating that the immunogenicity of a virus may depend not only on its PAMPs but also on its ability to modulate individual modalities of cell death. These findings provide insights into the diversity of cell death-pathways that an infection can trigger in professional immune cells and advance our understanding of the intracellular mechanisms that govern the immune response to a virus.


Assuntos
Morte Celular/genética , Macrófagos/metabolismo , Vacinas de DNA/uso terapêutico , Vaccinia virus/metabolismo , Vacinas Virais/uso terapêutico , Animais , Humanos , Camundongos , Transdução de Sinais
4.
Sci Immunol ; 6(59)2021 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-33990378

RESUMO

Inflammatory diseases are frequently treated with Janus kinase (JAK) inhibitors to diminish cytokine signaling. These treatments can lead to inadvertent immune suppression and may increase the risk of viral infection. Tyrosine kinase 2 (TYK2) is a JAK family member required for efficient type I interferon (IFN-α/ß) signaling. We report here that selective TYK2 inhibition preferentially blocked potentially detrimental type I IFN signaling, whereas IFN-λ-mediated responses were largely preserved. In contrast, the clinically used JAK1/2 inhibitor baricitinib was equally potent in blocking IFN-α/ß- or IFN-λ-driven responses. Mechanistically, we showed that epithelial cells did not require TYK2 for IFN-λ-mediated signaling or antiviral protection. TYK2 deficiency diminished IFN-α-induced protection against lethal influenza virus infection in mice but did not impair IFN-λ-mediated antiviral protection. Our findings suggest that selective TYK2 inhibitors used in place of broadly acting JAK1/2 inhibitors may represent a superior treatment option for type I interferonopathies to counteract inflammatory responses while preserving antiviral protection mediated by IFN-λ.


Assuntos
Vírus da Influenza A , Interferons/imunologia , Infecções por Orthomyxoviridae/imunologia , TYK2 Quinase/antagonistas & inibidores , Animais , Azetidinas/farmacologia , Células Cultivadas , Células Epiteliais/imunologia , Expressão Gênica , Compostos Heterocíclicos/farmacologia , Humanos , Inibidores de Janus Quinases/farmacologia , Masculino , Camundongos Knockout , Neutrófilos/imunologia , Purinas/farmacologia , Pirazóis/farmacologia , Sulfonamidas/farmacologia , TYK2 Quinase/genética , TYK2 Quinase/imunologia
5.
EMBO J ; 38(11)2019 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-30979778

RESUMO

Apoptosis is a frequent form of programmed cell death, but the apoptotic signaling pathway can also be engaged at a low level, in the absence of cell death. We here report that such sub-lethal engagement of mitochondrial apoptosis signaling causes the secretion of cytokines from human epithelial cells in a process controlled by the Bcl-2 family of proteins. We further show that sub-lethal signaling of the mitochondrial apoptosis pathway is initiated by infections with all tested viral, bacterial, and protozoan pathogens and causes damage to the genomic DNA. Epithelial cells infected with these pathogens secreted cytokines, and this cytokine secretion upon microbial infection was substantially reduced if mitochondrial sub-lethal apoptosis signaling was blocked. In the absence of mitochondrial pro-apoptotic signaling, the ability of epithelial cells to restrict intracellular bacterial growth was impaired. Triggering of the mitochondrial apoptosis apparatus thus not only causes apoptosis but also has an independent role in immune defense.


Assuntos
Apoptose/fisiologia , Imunidade/fisiologia , Mitocôndrias/fisiologia , Animais , Morte Celular/imunologia , Células Cultivadas , Células Epiteliais/fisiologia , Células HCT116 , Células HEK293 , Células HeLa , Humanos , Camundongos , Proteínas Proto-Oncogênicas c-bcl-2/fisiologia , Serina Endopeptidases/fisiologia , Transdução de Sinais/fisiologia , Proteína Killer-Antagonista Homóloga a bcl-2/fisiologia , Proteína X Associada a bcl-2/fisiologia
6.
Microbes Infect ; 20(5): 284-292, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29499390

RESUMO

The obligate intracellular bacterium Chlamydia trachomatis is the most common bacterial agent of sexually transmitted disease world-wide. Chlamydia trachomatis primarily infects epithelial cells of the genital tract but the infection may be associated with ascending infection. Infection-associated inflammation can cause tissue damage resulting in female infertility and ectopic pregnancy. The precise mechanism of inflammatory tissue damage is unclear but earlier studies implicate the chlamydial cryptic plasmid as well as responding neutrophils. We here rebuilt the interaction of Chlamydia trachomatis-infected epithelial cells and neutrophils in-vitro. During infection of human (HeLa) or mouse (oviduct) epithelial cells with Chlamydia trachomatis, a soluble factor was produced that attracted neutrophils and prolonged neutrophil survival, independently of Toll-like receptor signaling but dependent on the chlamydial plasmid. A number of cytokines, but most strongly GM-CSF, were secreted at higher amounts from cells infected with plasmid-bearing, compared to plasmid-deficient, bacteria. Blocking GM-CSF removed the secreted pro-survival activity towards neutrophils. A second, neutrophil TNF-stimulatory activity was detected in supernatants, requiring MyD88 or TRIF independently of the plasmid. The results identify two pro-inflammatory activities generated during chlamydial infection of epithelial cells and suggest that the epithelial cell, partly through the chlamydial plasmid, can initiate a myeloid immune response and inflammation.


Assuntos
Infecções por Chlamydia/imunologia , Infecções por Chlamydia/microbiologia , Chlamydia trachomatis/genética , Chlamydia trachomatis/patogenicidade , Células Epiteliais/microbiologia , Neutrófilos/imunologia , Plasmídeos/imunologia , Animais , Células Cultivadas , Chlamydia trachomatis/imunologia , Técnicas de Cocultura , Meios de Cultura , Citocinas/biossíntese , Citocinas/metabolismo , Células Epiteliais/metabolismo , Tubas Uterinas/citologia , Feminino , Fator Estimulador de Colônias de Granulócitos e Macrófagos/metabolismo , Células HeLa , Humanos , Inflamação/imunologia , Camundongos , Fator de Necrose Tumoral alfa/biossíntese
7.
PLoS One ; 8(11): e79352, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24223929

RESUMO

Neutrophil granulocyte (neutrophil) apoptosis plays a key role in determining inflammation in infectious and non-infectious settings. Recent work has shown that inhibitors of cyclin-dependent kinases (cdk) such as roscovitine can potently induce neutrophil apoptosis and reduce inflammation. Using a conditional Hoxb8-expression system we tested the participation of Bcl-2-family proteins to roscovitine-induced apoptosis in mouse neutrophils and in neutrophil progenitor cells. Bcl-2 strongly protected against roscovitine-induced apoptosis in neutrophils. The isolated loss of either Bim or noxa provided significant, partial protection while protection through combined loss of Bim and noxa or Bim and Puma was only slightly greater than this individual loss. The only substantial change in protein levels observed was the loss of Mcl-1, which was not transcriptional and was inhibited by proteasome blockade. In progenitor cells there was no protection by the loss of Bim alone but substantial protection by the loss of both Bim and Puma; surprisingly, strongest protection was seen by the isolated loss of noxa. The pattern of protein expression and Mcl-1-regulation in progenitor cells was very similar to the one observed in differentiated neutrophils. In addition, roscovitine strongly inhibited proliferation in progenitor cells, associated with an accumulation of cells in G2/M-phase.


Assuntos
Apoptose/efeitos dos fármacos , Neutrófilos/citologia , Neutrófilos/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Purinas/farmacologia , Células-Tronco/citologia , Células-Tronco/efeitos dos fármacos , Animais , Proteínas Reguladoras de Apoptose/metabolismo , Proteína 11 Semelhante a Bcl-2 , Caspases/metabolismo , Diferenciação Celular/efeitos dos fármacos , Humanos , Proteínas de Membrana/metabolismo , Camundongos , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Roscovitina , Proteínas Supressoras de Tumor/metabolismo
8.
Microbes Infect ; 8(3): 662-9, 2006 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-16476563

RESUMO

Legionella pneumophila, the agent of human Legionnaire's disease is a Gram-negative, rod-shaped bacterium. During infection, the bacteria invade human cells and replicate intracellularly. L. pneumophila can induce apoptosis in human myeloid and epitheloid cells and this may contribute to the development of pathology and disease. However, the molecular mechanism of apoptosis induction is still uncertain. Here we investigate this process. Legionella efficiently induced apoptosis in myeloid cells, T cells and fibroblasts. Induction of apoptosis involved activation of the initiator caspase-9 and effector caspases. Caspase activity was required for cell death. Analysis of mutant cells showed that the death receptor pathway was not involved in Legionella-induced apoptosis. Surprisingly, caspase activity was found almost exclusively in cells that did not harbor bacteria. Infection with Legionella caused the activation of the pro-apoptotic protein Bax and the release of cytochrome c. Mouse embryonic fibroblasts deficient for Bax and/or Bak were protected from Legionella-induced caspase activation. These results show a clear contribution of the mitochondrial pathway to Legionella-induced apoptosis.


Assuntos
Apoptose/fisiologia , Caspases/metabolismo , Legionella pneumophila/fisiologia , Mitocôndrias/metabolismo , Linhagem Celular Tumoral , Ativação Enzimática , Humanos , Mitocôndrias/enzimologia
9.
J Exp Med ; 200(7): 905-16, 2004 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-15452181

RESUMO

Chlamydia are obligate intracellular bacteria that replicate in a vacuole inside a host cell. Chlamydial infection has been shown to protect the host cell against apoptotic stimuli. This is likely important for the ability of Chlamydia to reproduce in human cells. Here we show that resistance to apoptosis is conveyed by the destruction of the proapoptotic BH3-only proteins Bim/Bod, Puma, and Bad during infection. Apoptotic stimuli were blocked upstream of the mitochondrial activation of Bax/Bak. During infection with both species, Chlamydia trachomatis and Chlamydia pneumoniae, Bim protein gradually disappeared without noticeable changes in Bim mRNA. The disappearance was blocked by inhibitors of the proteasome. Infected cells retained sensitivity to Bim expressed by transfection, indicating functional relevance of the Bim disappearance. Fusion to Bim targeted the green fluorescent protein for destruction during infection. Analysis of truncation mutants showed that a short region of Bim containing the BH3 domain was sufficient for destruction during chlamydial infection. Like Bim, Puma and Bad proteins disappeared during infection. These results reveal a novel way by which microbes can interfere with the host cell's apoptotic machinery, and provide a molecular explanation of the cellular resistance to apoptosis during infection with Chlamydia.


Assuntos
Apoptose/fisiologia , Proteínas de Transporte/metabolismo , Infecções por Chlamydia/fisiopatologia , Proteínas de Membrana/metabolismo , Fragmentos de Peptídeos/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Apoptose/imunologia , Proteínas Reguladoras de Apoptose , Proteína 11 Semelhante a Bcl-2 , Western Blotting , Caspase 3 , Caspases/metabolismo , Núcleo Celular/fisiologia , Infecções por Chlamydia/imunologia , Infecções por Chlamydia/metabolismo , Citometria de Fluxo , Proteínas de Fluorescência Verde/metabolismo , Humanos , Microscopia de Fluorescência , Análise de Sequência com Séries de Oligonucleotídeos , Complexo de Endopeptidases do Proteassoma/metabolismo , Transfecção , Células Tumorais Cultivadas , Proteína Supressora de Tumor p53/metabolismo , Proteína de Morte Celular Associada a bcl
10.
Infect Immun ; 72(2): 1107-15, 2004 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-14742558

RESUMO

Chlamydiae are obligate intracellular bacteria that infect human epithelial and myeloid cells. Previous work has established that chlamydiae are able to protect a cell against apoptosis induced by certain experimentally applied stimuli. Here we provide an analysis of this protective activity against the signal transduction during CD95-induced apoptosis. In HeLa cells overexpressing CD95, infection with Chlamydia trachomatis inhibited the appearance of apoptotic morphology, effector caspase activity, the activation of caspase-9 and -3, and the release of cytochrome c from mitochondria. However, caspase-8-processing and activity (measured as cleavage of Bid) were unaffected by the chlamydial infection. Similarly, infection with the species C. pneumoniae did not prevent the activation of caspase-8 but inhibited the appearance of effector caspase activity upon signaling through CD95. Furthermore, infection with C. trachomatis was able to inhibit CD95-induced apoptosis in Jurkat lymphoid cells, where a mitochondrial contribution is required, but not in SKW6.4 lymphoid cells, where caspase-8 directly activates caspase-3. Taken together, these data show that chlamydial infection can protect cells against CD95-induced apoptosis but only where a mitochondrial signaling step is necessary for apoptotic signal transduction.


Assuntos
Apoptose , Chlamydia trachomatis/fisiologia , Mitocôndrias/fisiologia , Receptor fas/fisiologia , Proteína Agonista de Morte Celular de Domínio Interatuante com BH3 , Proteínas de Transporte/metabolismo , Caspase 3 , Caspase 9 , Caspases/metabolismo , Linhagem Celular , Citocromos c/metabolismo , Citoproteção , Humanos , Transdução de Sinais , Linfócitos T Citotóxicos/imunologia
11.
Mol Immunol ; 40(10): 661-70, 2004 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-14644092

RESUMO

Signalling through the death receptor CD95 induces apoptosis by formation of a signalling complex at the cell membrane and subsequent caspase-8 and caspase-3-activation. Treatment of Jurkat T cells with protonophores across the mitochondrial membrane such as 2,4-dinitrophenol (DNP) enhances the death-inducing capacity of CD95. In this study, we show that this enhancement is due to the specific acceleration of caspase-8-processing and activation at the CD95-receptor. DNP-treatment did not affect NF-kappaB-induction by CD95. Immunoprecipitation experiments showed that the amounts of the adapter FADD/MORT1 and pro-caspase-8 at the CD95-receptor were not altered by DNP. Subcellular fractionation studies revealed that the amount of mature caspase-8 but not pro-caspase at the membrane was increased following CD95-stimulation in the presence of DNP. As a consequence of caspase-activation, c-FLIP-levels in the cytosol decreased. In Jurkat cells overexpressing c-FLIPS, DNP was still able to enhance caspase-activation. The enhancing capacity of DNP was seen in some cell lines (Jurkat, CEM and HeLa) but not in SKW6 cells and was also found in mitogen-stimulated human T cells. Furthermore, the enhancement extended to TRAIL-induced caspase-activation. Thus, a mechanism exists by which caspase-8-activation can be accelerated at death receptors and this mechanism can be triggered by targeting mitochondrial oxidative phosphorylation.


Assuntos
Caspases/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular , Receptor fas/metabolismo , 2,4-Dinitrofenol/farmacologia , Apoptose/efeitos dos fármacos , Proteína Reguladora de Apoptosis Semelhante a CASP8 e FADD , Carbonil Cianeto m-Clorofenil Hidrazona/farmacologia , Proteínas de Transporte/metabolismo , Caspase 8 , Linhagem Celular , Proteínas Adaptadoras de Sinalização de Receptores de Domínio de Morte , Ativação Enzimática/efeitos dos fármacos , Células HeLa , Humanos , Técnicas In Vitro , Células Jurkat , Ativação Linfocitária , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Fosforilação Oxidativa , Receptores do Fator de Necrose Tumoral/metabolismo , Transdução de Sinais/efeitos dos fármacos , Linfócitos T/imunologia , Linfócitos T/metabolismo , Desacopladores/farmacologia
12.
Biochem Biophys Res Commun ; 290(1): 359-65, 2002 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-11779177

RESUMO

Caspase family cell death proteases are activated during apoptosis through the oligomerization of caspase-binding "adapter" proteins. In the nematode Caenorhabditis elegans one adapter protein, CED-4, exists. Here we report an analysis of CED-4 protein expressed in insect Sf9 cells by infection with recombinant baculovirus. During expression, CED-4 assumed a perinuclear spherical or reticular localization where it was partly resistant to extraction with nonionic detergents. Both purified FLAG-CED-4 and GST-FLAG-CED-4 proteins were present in solution as large complexes. FLAG-CED-4 complexes were estimated by gel filtration to have a molecular weight of approximately 500 kDa to >1.2 MDa, while GST-FLAG-CED-4 complexes appeared somewhat smaller. Unlike its mammalian homologue Apaf-1, CED-4 exhibited a marked preference for ATP over dATP in filter binding studies and in competition experiments. ATP hydrolysis was required neither for complex stability nor for binding of CED-3. These features are likely to be relevant for CED-4's function as a caspase adapter.


Assuntos
Trifosfato de Adenosina/metabolismo , Proteínas de Caenorhabditis elegans , Caenorhabditis elegans/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Proteínas de Helminto/metabolismo , Animais , Ligação Competitiva , Proteínas de Ligação ao Cálcio/biossíntese , Caspases/metabolismo , Linhagem Celular , Cromatografia em Gel , Reagentes de Ligações Cruzadas/farmacologia , Detergentes/farmacologia , Relação Dose-Resposta a Droga , Proteínas de Helminto/biossíntese , Insetos , Ligação Proteica , Proteínas Recombinantes/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA