Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Med Genet ; 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38937076

RESUMO

BACKGROUND: Tatton-Brown-Rahman syndrome (TBRS; OMIM 615879), also known as DNA methyltransferase 3 alpha (DNMT3A)-overgrowth syndrome (DOS), was first described by Tatton-Brown in 2014. This syndrome is characterised by overgrowth, intellectual disability and distinctive facial features and is the consequence of germline loss-of-function variants in DNMT3A, which encodes a DNA methyltransferase involved in epigenetic regulation. Somatic variants of DNMT3A are frequently observed in haematological malignancies, including acute myeloid leukaemia (AML). To date, 100 individuals with TBRS with de novo germline variants have been described. We aimed to further characterise this disorder clinically and at the molecular level in a nationwide series of 24 French patients and to investigate the correlation between the severity of intellectual disability and the type of variant. METHODS: We collected genetic and medical information from 24 individuals with TBRS using a questionnaire released through the French National AnDDI-Rares Network. RESULTS: Here, we describe the first nationwide French cohort of 24 individuals with germline likely pathogenic/pathogenic variants in DNMT3A, including 17 novel variants. We confirmed that the main phenotypic features were intellectual disability (100% of individuals), distinctive facial features (96%) and overgrowth (87%). We highlighted novel clinical features, such as hypertrichosis, and further described the neurological features and EEG results. CONCLUSION: This study of a nationwide cohort of individuals with TBRS confirms previously published data and provides additional information and clarifies clinical features to facilitate diagnosis and improve care. This study adds value to the growing body of knowledge on TBRS and broadens its clinical and molecular spectrum.

2.
J Med Genet ; 60(6): 620-626, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36368868

RESUMO

BACKGROUND: Oculo-auriculo-vertebral spectrum (OAVS) is the second most common cause of head and neck malformations in children after orofacial clefts. OAVS is clinically heterogeneous and characterised by a broad range of clinical features including ear anomalies with or without hearing loss, hemifacial microsomia, orofacial clefts, ocular defects and vertebral abnormalities. Various genetic causes were associated with OAVS and copy number variations represent a recurrent cause of OAVS, but the responsible gene often remains elusive. METHODS: We described an international cohort of 17 patients, including 10 probands and 7 affected relatives, presenting with OAVS and carrying a 14q22.3 microduplication detected using chromosomal microarray analysis. For each patient, clinical data were collected using a detailed questionnaire addressed to the referring clinicians. We subsequently studied the effects of OTX2 overexpression in a zebrafish model. RESULTS: We defined a 272 kb minimal common region that only overlaps with the OTX2 gene. Head and face defects with a predominance of ear malformations were present in 100% of patients. The variability in expressivity was significant, ranging from simple chondromas to severe microtia, even between intrafamilial cases. Heterologous overexpression of OTX2 in zebrafish embryos showed significant effects on early development with alterations in craniofacial development. CONCLUSIONS: Our results indicate that proper OTX2 dosage seems to be critical for the normal development of the first and second branchial arches. Overall, we demonstrated that OTX2 genomic duplications are a recurrent cause of OAVS marked by auricular malformations of variable severity.


Assuntos
Fenda Labial , Fissura Palatina , Síndrome de Goldenhar , Humanos , Animais , Síndrome de Goldenhar/genética , Peixe-Zebra/genética , Variações do Número de Cópias de DNA/genética , Fatores de Transcrição Otx/genética
3.
Eur J Hum Genet ; 28(8): 1044-1055, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32071410

RESUMO

Primrose syndrome is characterized by variable intellectual deficiency, behavior disorders, facial features with macrocephaly, and a progressive phenotype with hearing loss and ectopic calcifications, distal muscle wasting, and contractures. In 2014, ZBTB20 variants were identified as responsible for this syndrome. Indeed, ZBTB20 plays an important role in cognition, memory, learning processes, and has a transcription repressive effect on numerous genes. A more severe phenotype was discussed in patients with missense single nucleotide variants than in those with large deletions. Here, we report on the clinical and molecular results of 14 patients: 6 carrying ZBTB20 missense SNVs, 1 carrying an early truncating indel, and 7 carrying 3q13.31 deletions, recruited through the AnDDI-Rares network. We compared their phenotypes and reviewed the data of the literature, in order to establish more powerful phenotype-genotype correlations. All 57 patients presented mild-to-severe ID and/or a psychomotor delay. Facial features were similar with macrocephaly, prominent forehead, downslanting palpebral fissures, ptosis, and large ears. Hearing loss was far more frequent in patients with missense SNVs (p = 0.002), ectopic calcification, progressive muscular wasting, and contractures were observed only in patients with missense SNVs (p nonsignificant). Corpus callosum dysgenesis (p = 0.00004), hypothyroidism (p = 0.047), and diabetes were also more frequent in this group. However, the median age was 9.4 years in patients with deletions and truncating variant compared with 15.1 years in those with missense SNVs. Longer follow-up will be necessary to determine whether the phenotype of patients with deletions is also progressive.


Assuntos
Anormalidades Múltiplas/genética , Calcinose/genética , Otopatias/genética , Deficiência Intelectual/genética , Atrofia Muscular/genética , Proteínas do Tecido Nervoso/genética , Fenótipo , Fatores de Transcrição/genética , Anormalidades Múltiplas/patologia , Adolescente , Calcinose/patologia , Criança , Pré-Escolar , Deleção Cromossômica , Cromossomos Humanos Par 3/genética , Corpo Caloso/diagnóstico por imagem , Otopatias/patologia , Humanos , Deficiência Intelectual/patologia , Atrofia Muscular/patologia , Mutação de Sentido Incorreto
4.
Clin Genet ; 94(6): 575-580, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30221343

RESUMO

We report findings from a male fetus of 26 weeks' gestational age with severe isolated intrauterine growth restriction (IUGR). Chromosomal microarray analysis (CMA) on amniotic fluid cells revealed a 1.06-Mb duplication in 19q13.42 inherited from the healthy father. This duplication contains 34 genes including ZNF331, a gene encoding a zinc-finger protein specifically imprinted (paternally expressed) in the placenta. Study of the ZNF331 promoter by methylation-specific-multiplex ligation-dependent probe amplification showed that the duplicated allele was not methylated in the fetus unlike in the father's genome, suggesting both copies of the ZNF331 gene are expressed in the fetus. The anti-ZNF331 immunohistochemical analysis confirmed that ZNF331 was expressed at higher levels in renal and placental tissues from this fetus compared to controls. Interestingly, ZNF331 expression levels in the placenta have previously been reported to inversely correlate with fetal growth parameters. The original observation presented in this report showed that duplication of ZNF331 could be a novel genetic cause of isolated IUGR and underlines the usefulness of CMA to investigate the genetic causes of isolated severe IUGR.


Assuntos
Cromossomos Humanos Par 19 , Retardo do Crescimento Fetal/diagnóstico , Retardo do Crescimento Fetal/genética , Duplicação Gênica , Estudos de Associação Genética , Predisposição Genética para Doença , Impressão Genômica , Adulto , Biópsia , Proteínas de Ligação a DNA/genética , Epigênese Genética , Feminino , Estudos de Associação Genética/métodos , Testes Genéticos , Humanos , Imuno-Histoquímica , Proteínas de Neoplasias/genética , Gravidez , Ultrassonografia Pré-Natal
5.
J Med Genet ; 54(7): 502-510, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28270404

RESUMO

BACKGROUND: Congenital anomalies of the kidney and urinary tract (CAKUT) represent a significant healthcare burden since it is the primary cause of chronic kidney in children. CNVs represent a recurrent molecular cause of CAKUT but the culprit gene remains often elusive. Our study aimed to define the gene responsible for CAKUT in patients with an 1q23.3q24.1 microdeletion. METHODS: We describe eight patients presenting with CAKUT carrying an 1q23.3q24.1 microdeletion as identified by chromosomal microarray analysis (CMA). Clinical features were collected, especially the renal and urinary tract phenotype, and extrarenal features. We characterised PBX1 expression and localisation in fetal and adult kidneys using quantitative RT-PCR and immunohistochemistry. RESULTS: We defined a 276-kb minimal common region (MCR) that only overlaps with the PBX1 gene. All eight patients presented with syndromic CAKUT. CAKUT were mostly bilateral renal hypoplasia (75%). The most frequent extrarenal symptoms were developmental delay and ear malformations. We demonstrate that PBX1 is strongly expressed in fetal kidneys and brain and expression levels decreased in adult samples. In control fetal kidneys, PBX1 was localised in nuclei of medullary, interstitial and mesenchymal cells, whereas it was present in endothelial cells in adult kidneys. CONCLUSIONS: Our results indicate that PBX1 haploinsufficiency leads to syndromic CAKUT as supported by the Pbx1-null mice model. Correct PBX1 dosage appears to be critical for normal nephrogenesis and seems important for brain development in humans. CMA should be recommended in cases of fetal renal anomalies to improve genetic counselling and pregnancy management.


Assuntos
Haploinsuficiência/genética , Fator de Transcrição 1 de Leucemia de Células Pré-B/genética , Anormalidades Urogenitais/genética , Refluxo Vesicoureteral/genética , Criança , Pré-Escolar , Feminino , Feto/metabolismo , Genoma Humano , Humanos , Lactente , Rim/anormalidades , Rim/embriologia , Rim/metabolismo , Rim/patologia , Masculino , Síndrome
6.
Am J Med Genet A ; 170A(2): 498-503, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26545049

RESUMO

Several studies have recently reported that 22q12.1 deletions encompassing the MN1 gene are associated with craniofacial anomalies. These observations are consistent with the hypothesis that MN1 haploinsufficiency may be solely responsible for craniofacial anomalies and/or cleft palate. We report here the case of a 4-year-old boy presenting with global developmental delay and craniofacial anomalies including severe maxillary protrusion and retromicrognathia. Array-CGH detected a 2.4 Mb de novo deletion of chromosome 22q12.1 which did not encompass the MN1 gene thought to be the main pathological candidate in 22q12.1 deletions. This observation, combined with data from other patients from the Database of Chromosomal Imbalance and Phenotype in Humans Using Ensemble Resources (DECIPHER), suggests that other gene(s) in the 22q12.1 region are likely involved in craniofacial anomalies and/or may contribute to the phenotypic variability observed in patients with MN1 deletion.


Assuntos
Deleção Cromossômica , Cromossomos Humanos Par 22/genética , Anormalidades Craniofaciais/genética , Proteínas Supressoras de Tumor/genética , Adulto , Pré-Escolar , Hibridização Genômica Comparativa , Anormalidades Craniofaciais/diagnóstico , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Fenótipo , Transativadores
7.
Eur J Hum Genet ; 21(10): 1079-84, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23340515

RESUMO

Williams-Beuren syndrome (WBS) is a neurodevelopmental disorder with multi-systemic manifestations, caused by a heterozygous segmental deletion of 1.55-1.83 Mb at chromosomal band 7q11.23. The deletion can include the NCF1 gene that encodes the p47(phox) protein, a component of the leukocyte NADPH oxidase enzyme, which is essential for the defense against microbial pathogens. It has been postulated that WBS patients with two functional NCF1 genes are more susceptible to occurrence of hypertension than WBS patients with only one functional NCF1 gene. We now describe two extremely rare WBS patients without any functional NCF1 gene, because of a mutation in NCF1 on the allele not carrying the NCF1-removing WBS deletion. These two patients suffer from chronic granulomatous disease with increased microbial infections in addition to WBS. Interestingly, one of these patients did suffer from hypertension, indicating that other factors than NADPH oxidase in vascular tissue may be involved in causing hypertension.


Assuntos
Doença Granulomatosa Crônica/genética , NADPH Oxidases/deficiência , Síndrome de Williams/genética , Adolescente , Alelos , Pré-Escolar , Deleção de Genes , Doença Granulomatosa Crônica/complicações , Doença Granulomatosa Crônica/diagnóstico , Doença Granulomatosa Crônica/metabolismo , Humanos , Masculino , NADPH Oxidases/genética , NADPH Oxidases/metabolismo , Neutrófilos/metabolismo , Síndrome de Williams/complicações , Síndrome de Williams/diagnóstico , Síndrome de Williams/metabolismo
8.
J Clin Immunol ; 32(5): 942-58, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22562447

RESUMO

Chronic granulomatous disease is an inherited disorder in which phagocytes lack a functional NADPH oxidase and cannot produce superoxide anions. The most common form is caused by mutations in CYBB encoding gp91phox. We investigated 24 CGD patients and their families. Twenty-one mutations in CYBB were classified as X91(0), X91(+) or X91(-) variants according to cytochrome b (558) expression. Point mutations in encoding regions represented 50 % of the mutations found in CYBB, splice site mutations 27 %, deletions and insertions 23 %. Eight mutations in CYBB were novel leading to X91(0)CGD cases. Two of these were point mutations: c493G>T and a double mutation c625C>G in exon 6 and c1510C>T in exon 12 leading to a premature stop codon at Gly165 in gp91phox and missense mutations His209Arg/Thr503Ile respectively. Two novel splice mutations in 5'intronic regions of introns 1 and 6 were found. A novel deletion/insertion c1024_1026delCTG/insT results in a frameshift introducing a stop codon at position 346 in gp91phox. The last novel mutation was the insertion of a T at c1373 leading to a frameshift and a premature stop codon at position 484 in gp91phox. For the first time the precise size of two large mutations in CYBB was determined by array-comparative genomic hybridization and carriers' status were evaluated by multiplex ligation-dependent probe amplification assay. No clear correlation between clinical severity and CYBB mutations could be established. Of three mutations in CYBA, NCF1 and NCF2 leading to rare autosomal recessive CGD, one nonsense mutation c29G>A in exon 1 of NCF2 was new.


Assuntos
Doença Granulomatosa Crônica/genética , Glicoproteínas de Membrana/genética , NADPH Oxidases/genética , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Masculino , Mutação , NADPH Oxidase 2
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA