Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
JCI Insight ; 6(15)2021 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-34197340

RESUMO

Gain-of-function polymorphisms in the transcription factor IFN regulatory factor 5 (IRF5) are associated with an increased risk of developing systemic lupus erythematosus. However, the IRF5-expressing cell type(s) responsible for lupus pathogenesis in vivo is not known. We now show that monoallelic IRF5 deficiency in B cells markedly reduced disease in a murine lupus model. In contrast, similar reduction of IRF5 expression in macrophages, monocytes, and neutrophils did not reduce disease severity. B cell receptor and TLR7 signaling synergized to promote IRF5 phosphorylation and increase IRF5 protein expression, with these processes being independently regulated. This synergy increased B cell-intrinsic IL-6 and TNF-α production, both key requirements for germinal center (GC) responses, with IL-6 and TNF-α production in vitro and in vivo being substantially lower with loss of 1 allele of IRF5. Mechanistically, TLR7-dependent IRF5 nuclear translocation was reduced in B cells from IRF5-heterozygous mice. In addition, we show in multiple lupus models that IRF5 expression was dynamically regulated in vivo with increased expression in GC B cells compared with non-GC B cells and with further sequential increases during progression to plasmablasts and long-lived plasma cells. Overall, a critical threshold level of IRF5 in B cells was required to promote disease in murine lupus.


Assuntos
Linfócitos B/metabolismo , Fatores Reguladores de Interferon , Interleucina-6/metabolismo , Lúpus Eritematoso Sistêmico , Fator de Necrose Tumoral alfa/metabolismo , Animais , Autoimunidade , Modelos Animais de Doenças , Mutação com Ganho de Função , Regulação da Expressão Gênica/imunologia , Centro Germinativo , Fatores Reguladores de Interferon/deficiência , Fatores Reguladores de Interferon/genética , Fatores Reguladores de Interferon/metabolismo , Lúpus Eritematoso Sistêmico/genética , Lúpus Eritematoso Sistêmico/imunologia , Camundongos , Transdução de Sinais/imunologia
2.
J Virol ; 85(20): 10834-50, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21849441

RESUMO

Sexually transmitted pathogens activate HIV-1 replication and inflammatory gene expression in macrophages through engagement of Toll-like receptors (TLRs). Ligand-activated nuclear receptor (NR) transcription factors, including glucocorticoid receptor (GR), peroxisome proliferator-activated receptor gamma (PPARγ), and liver X receptor (LXR), are potent inhibitors of TLR-induced inflammatory gene expression. We therefore hypothesized that ligand-activated NRs repress both basal and pathogen-enhanced HIV-1 replication in macrophages by directly repressing HIV-1 transcription and by ameliorating the local proinflammatory response to pathogens. We show that the TLR2 ligand PAM3CSK4 activated virus transcription in macrophages and that NR signaling repressed both basal and TLR-induced HIV-1 transcription. NR ligand treatment repressed HIV-1 expression when added concurrently with TLR ligands and in the presence of cycloheximide, demonstrating that they act independently of new cellular gene expression. We found that treatment with NR ligands inhibited the association of AP-1 and NF-κB subunits, as well as the coactivator CBP, with the long terminal repeat (LTR). We show for the first time that the nuclear corepressor NCoR is bound to HIV-1 LTR in unstimulated macrophages and is released from the LTR after TLR engagement. Treatment with PPARγ and LXR ligands, but not GR ligands, prevented this TLR-induced clearance of NCoR from the LTR. Our data demonstrate that both classical and nonclassical trans-repression mechanisms account for NR-mediated HIV-1 repression. Finally, NR ligand treatment inhibited the potent proinflammatory response induced by PAM3CSK4 that would otherwise activate HIV-1 expression in infected cells. Our findings provide a rationale for studying ligand-activated NRs as modulators of basal and inflammation-induced HIV-1 replication.


Assuntos
Regulação Viral da Expressão Gênica , HIV-1/imunologia , Macrófagos/virologia , Receptores Citoplasmáticos e Nucleares/metabolismo , Transdução de Sinais , Replicação Viral , Regulação para Baixo , HIV-1/fisiologia , Humanos , Transcrição Gênica , Proteínas Virais/biossíntese
3.
J Immunol ; 181(9): 5875-84, 2008 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-18941176

RESUMO

Autoreactive B cells are activated by DNA, chromatin, or chromatin-containing immune complexes (ICs) through a mechanism dependent on dual engagement of the BCR and TLR9. We examined the contribution of endogenous DNA sequence elements to this process. DNA sequence can determine both recognition by the BCR and by TLR9. DNA fragments containing CpG islands, a natural source of unmethylated CpG dinucleotides, promote the activation of DNA-reactive B cells derived from BCR transgenic mice as well as DNA-reactive B cells present in the normal repertoire. ICs containing these CpG island fragments are potent ligands for AM14 IgG2a-reactive B cells. In contrast, ICs containing total mammalian DNA, or DNA fragments lacking immunostimulatory motifs, fail to induce B cell proliferation, indicating that BCR crosslinking alone is insufficient to activate low-affinity autoreactive B cells. Importantly, priming B cells with IFN-alpha lowers the BCR activation threshold and relaxes the selectivity for CpG-containing DNA. Taken together, our findings underscore the importance of endogenous CpG-containing DNAs in the TLR9-dependent activation of autoreactive B cells and further identify an important mechanism through which IFN-alpha can contribute to the pathogenesis of systemic lupus erythematosus.


Assuntos
Autoantígenos/metabolismo , Subpopulações de Linfócitos B/imunologia , Subpopulações de Linfócitos B/metabolismo , Ilhas de CpG/imunologia , Interferon-alfa/fisiologia , Animais , Células Clonais , Ilhas de CpG/genética , DNA Bacteriano/imunologia , DNA Bacteriano/metabolismo , Relação Dose-Resposta Imunológica , Ativação Linfocitária/genética , Ativação Linfocitária/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Receptores de Antígenos de Linfócitos B/metabolismo
4.
J Endotoxin Res ; 12(6): 379-84, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-17254393

RESUMO

AM14 B cells are a prototype for those low affinity autoreactive B cells that routinely mature as naïve cells in peripheral lymphoid tissues. These cells express a transgene-encoded receptor specific for IgG2a and can be effectively activated by immune complexes that incorporate either mammalian DNA or mammalian RNA that has been released from dead or dying cells. Activation depends on the ability of the B-cell receptor to deliver antigen to an internal vesicular compartment containing either Toll-like receptor-9 (TLR9) or TLR7. Since TLR9 and TLR7 are thought to recognize microbial DNA and RNA preferentially, it is important to determine under what conditions mammalian DNA and RNA become effective TLR ligands, and whether the determining factor is delivery or structure. This issue has been addressed by using IgG2a mAbs to deliver immune complexes preloaded with defined fragments of DNA or RNA, or by using modified ODNs/ORNs. The data demonstrate that only certain nucleic acid sequences or structures can induce autoreactive B-cell proliferation, even when delivery to the appropriate TLR compartment is facilitated by uptake through the B-cell receptor (BCR).


Assuntos
Autoantígenos/imunologia , Linfócitos B/imunologia , DNA/imunologia , RNA/imunologia , Adjuvantes Imunológicos , Animais , Sequência de Bases , Células da Medula Óssea/fisiologia , Primers do DNA , Imunoglobulina M , Cinética , Ativação Linfocitária , Macrófagos/imunologia , Mamíferos , Camundongos , Camundongos Knockout , Receptor Toll-Like 9/deficiência , Receptor Toll-Like 9/genética , Receptor Toll-Like 9/fisiologia
5.
J Exp Med ; 202(9): 1171-7, 2005 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-16260486

RESUMO

Previous studies (Leadbetter, E.A., I.R. Rifkin, A.H. Hohlbaum, B. Beaudette, M.J. Shlomchik, and A. Marshak-Rothstein. 2002. Nature. 416:603-607; Viglianti, G.A., C.M. Lau, T.M. Hanley, B.A. Miko, M.J. Shlomchik, and A. Marshak-Rothstein. 2003. Immunity. 19:837-847) established the unique capacity of DNA and DNA-associated autoantigens to activate autoreactive B cells via sequential engagement of the B cell antigen receptor (BCR) and Toll-like receptor (TLR) 9. We demonstrate that this two-receptor paradigm can be extended to the BCR/TLR7 activation of autoreactive B cells by RNA and RNA-associated autoantigens. These data implicate TLR recognition of endogenous ligands in the response to both DNA- and RNA-associated autoantigens. Importantly, the response to RNA-associated autoantigens was markedly enhanced by IFN-alpha, a cytokine strongly linked to disease progression in patients with systemic lupus erythematosus (SLE). As further evidence that TLRs play a key role in autoantibody responses in SLE, we found that autoimmune-prone mice, lacking the TLR adaptor protein MyD88, had markedly reduced chromatin, Sm, and rheumatoid factor autoantibody titers.


Assuntos
Autoantígenos/imunologia , Linfócitos B/imunologia , Ativação Linfocitária/imunologia , Glicoproteínas de Membrana/fisiologia , RNA/metabolismo , Receptores de Antígenos de Linfócitos B/fisiologia , Receptor 7 Toll-Like/fisiologia , Proteínas Adaptadoras de Transdução de Sinal/deficiência , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Antígenos de Diferenciação/genética , Autoanticorpos/biossíntese , Autoantígenos/metabolismo , Linfócitos B/metabolismo , Feminino , Hibridomas , Interferon-alfa/fisiologia , Ativação Linfocitária/genética , Masculino , Glicoproteínas de Membrana/deficiência , Glicoproteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos MRL lpr , Camundongos Knockout , Camundongos Transgênicos , Fator 88 de Diferenciação Mieloide , Receptores de Antígenos de Linfócitos B/genética , Receptores Imunológicos/deficiência , Receptores Imunológicos/genética , Ribonucleoproteínas/imunologia , Receptor 7 Toll-Like/deficiência , Receptor 7 Toll-Like/genética , Receptor Toll-Like 9/deficiência , Receptor Toll-Like 9/genética , Receptor Toll-Like 9/fisiologia
6.
J Biol Chem ; 279(42): 43604-13, 2004 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-15299018

RESUMO

All-trans retinoic acid (RA) represses HIV-1 transcription and replication in cultured monocytic cells and in primary monocyte-derived macrophages. Here we examine the role of histone acetylation and chromatin remodeling in RA-mediated repression. RA pretreatment of latently infected U1 promonocytes inhibits HIV-1 expression in response to the histone deacetylase (HDAC) inhibitor, trichostatin A (TSA). TSA is thought to activate HIV-1 transcription by inducing histone hyperacetylation within a regulatory nucleosome, nuc-1, positioned immediately downstream from the transcription start site. Acetylation of nuc-1 is thought to be a critical step in activation that precedes nuc-1 remodeling and, subsequently, transcriptional initiation. Here we demonstrate that TSA treatment induces H3 and H4 hyperacetylation and nuc-1 remodeling. Although RA pretreatment inhibits nuc-1 remodeling and HIV-1 transcription, it has no effect on histone acetylation. This suggests that acetylation and remodeling are not obligatorily coupled. We also show that growth of U1 cells in retinoid-deficient medium induces nuc-1 remodeling and HIV-1 expression but does not induce histone hyperacetylation. These findings suggest that remodeling, not histone hyperacetylation, is the limiting step in transcriptional activation in these cells. Together, these data suggest that RA signaling maintains the chromatin structure of the HIV-1 promoter in a transcriptionally non-permissive state that may contribute to the establishment of latency in monocyte/macrophages.


Assuntos
Cromatina/ultraestrutura , HIV-1/genética , Regiões Promotoras Genéticas , Linhagem Celular , Cromatina/efeitos dos fármacos , Cromatina/genética , Ensaio de Imunoadsorção Enzimática , Proteína do Núcleo p24 do HIV/análise , HIV-1/efeitos dos fármacos , Humanos , Macrófagos/citologia , Macrófagos/virologia , Mapeamento por Restrição , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Tretinoína/farmacologia
7.
J Virol ; 78(6): 2819-30, 2004 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-14990701

RESUMO

Vitamin A deficiency has been correlated with increased severity of human immunodeficiency virus type 1 (HIV-1)-associated disease. Moreover, vitamin A supplementation can reduce AIDS-associated morbidity and mortality. Our group and others have shown that retinoids, the bioactive metabolites of vitamin A, repress HIV-1 replication in monocytic cell lines and primary macrophages by blocking long-terminal-repeat (LTR)-directed transcription. Based on these studies, we hypothesize that retinoids are natural repressors of HIV-1 in vivo. We show here that all-trans-retinoic acid (RA)-mediated repression of HIV-1 activation requires pretreatment for at least 12 h and is blocked by the protein synthesis inhibitors cycloheximide and puromycin. Studies of the kinetics of RA-mediated repression in U1 cells and primary monocyte-derived macrophages (MDMs) reveal that the repressive effects of RA on HIV-1 expression are long-lasting but reversible. We demonstrate that HIV-1 expression is activated when U1 cells or MDMs are cultured in retinoid-free synthetic medium and show that physiological concentrations of RA repress this activation. In addition, the synthetic pan-retinoic acid receptor antagonist BMS-204 493 activates HIV-1 replication in U1 cells in a dose-dependent manner, suggesting that RA-induced transactivation of cellular gene expression is required for HIV-1 repression. Together, these data support the hypothesis that retinoids present in tissue culture media in vitro and serum in vivo maintain HIV-1 in a transcriptionally repressed state in monocytes/macrophages.


Assuntos
HIV-1/efeitos dos fármacos , Macrófagos/virologia , Monócitos/virologia , Retinoides/farmacologia , Replicação Viral/efeitos dos fármacos , Células Cultivadas , Cicloeximida/farmacologia , Regulação Viral da Expressão Gênica , Infecções por HIV/virologia , Repetição Terminal Longa de HIV , HIV-1/patogenicidade , HIV-1/fisiologia , Humanos , Puromicina/farmacologia , Transcrição Gênica/efeitos dos fármacos
8.
J Biol Chem ; 277(52): 50579-88, 2002 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-12218051

RESUMO

We previously reported that monoclonal antibodies to protein-disulfide isomerase (PDI) and other membrane-impermeant PDI inhibitors prevented HIV-1 infection. PDI is present at the surface of HIV-1 target cells and reduces disulfide bonds in a model peptide attached to the cell membrane. Here we show that soluble PDI cleaves disulfide bonds in recombinant envelope glycoprotein gp120 and that gp120 bound to the surface receptor CD4 undergoes a disulfide reduction that is prevented by PDI inhibitors. Concentrations of inhibitors that prevent this reduction and inhibit the cleavage of surface-bound disulfide conjugate prevent infection at the level of HIV-1 entry. The entry of HIV-1 strains differing in their coreceptor specificities is similarly inhibited, and so is the reduction of gp120 bound to CD4 of coreceptor-negative cells. PDI inhibitors also prevent HIV envelope-mediated cell-cell fusion but have no effect on the entry of HIV-1 pseudo-typed with murine leukemia virus envelope. Importantly, PDI coprecipitates with both soluble and cellular CD4. We propose that a PDI.CD4 association at the cell surface enables PDI to reach CD4-bound virus and to reduce disulfide bonds present in the domain of gp120 that binds to CD4. Conformational changes resulting from the opening of gp120-disulfide loops may drive the processes of virus-cell and cell-cell fusion. The biochemical events described identify new potential targets for anti-HIV agents.


Assuntos
Inibidores Enzimáticos/farmacologia , Proteína gp120 do Envelope de HIV/fisiologia , HIV-1/efeitos dos fármacos , HIV-1/fisiologia , Isomerases de Dissulfetos de Proteínas/antagonistas & inibidores , Receptores de HIV/fisiologia , Animais , Bovinos , Fusão Celular , Linhagem Celular , Cromatografia de Afinidade , Dissulfetos/metabolismo , Proteína gp120 do Envelope de HIV/efeitos dos fármacos , Infecções por HIV/prevenção & controle , HIV-1/isolamento & purificação , Humanos , Cinética , Fígado/virologia , Isomerases de Dissulfetos de Proteínas/isolamento & purificação , Receptores de HIV/antagonistas & inibidores , Proteínas Recombinantes/antagonistas & inibidores , Proteínas Recombinantes/isolamento & purificação
9.
AIDS Res Hum Retroviruses ; 18(9): 649-56, 2002 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-12079560

RESUMO

All-trans-retinoic acid (RA) has been shown either to activate or repress human immunodeficiency virus type 1 (HIV-1) replication in primary monocyte-derived-macrophages (MDMs). We systematically investigated the contribution that cell donor and virus differences make to this variability. We found that the effect of RA was cell donor dependent. In addition, the ability of RA to repress HIV-1 replication varied between different virus stocks. In no case did RA affect either virus entry or integration but instead affected the accumulation of viral mRNAs in infected cells. Despite the complex variability in RA responsiveness in untreated cells, we found that RA consistently repressed virus replication when the MDMs were treated with concentrations of interleukin 1 beta (IL-1 beta) and IL-6 that are expected at local sites of infection, where HIV-1-infected macrophages reside in vivo.


Assuntos
HIV-1/efeitos dos fármacos , Interleucina-1/farmacologia , Interleucina-6/farmacologia , Macrófagos/virologia , Tretinoína/farmacologia , Replicação Viral/efeitos dos fármacos , Doadores de Sangue , Sinergismo Farmacológico , HIV-1/fisiologia , Humanos , Macrófagos/efeitos dos fármacos , Replicação Viral/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA