Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Clin Invest ; 133(19)2023 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-37781924

RESUMO

Type 2 diabetes mellitus (T2DM), characterized by hyperglycemia and dyslipidemia, leads to nonproliferative diabetic retinopathy (NPDR). NPDR is associated with blood-retina barrier disruption, plasma exudates, microvascular degeneration, elevated inflammatory cytokine levels, and monocyte (Mo) infiltration. Whether and how the diabetes-associated changes in plasma lipid and carbohydrate levels modify Mo differentiation remains unknown. Here, we show that mononuclear phagocytes (MPs) in areas of vascular leakage in DR donor retinas expressed perilipin 2 (PLIN2), a marker of intracellular lipid load. Strong upregulation of PLIN2 was also observed when healthy donor Mos were treated with plasma from patients with T2DM or with palmitate concentrations typical of those found in T2DM plasma, but not under high-glucose conditions. PLIN2 expression correlated with the expression of other key genes involved in lipid metabolism (ACADVL, PDK4) and the DR biomarkers ANGPTL4 and CXCL8. Mechanistically, we show that lipid-exposed MPs induced capillary degeneration in ex vivo explants that was inhibited by pharmaceutical inhibition of PPARγ signaling. Our study reveals a mechanism linking dyslipidemia-induced MP polarization to the increased inflammatory cytokine levels and microvascular degeneration that characterize NPDR. This study provides comprehensive insights into the glycemia-independent activation of Mos in T2DM and identifies MP PPARγ as a target for inhibition of lipid-activated MPs in DR.


Assuntos
Diabetes Mellitus Tipo 2 , Retinopatia Diabética , Dislipidemias , Humanos , Citocinas/metabolismo , Diabetes Mellitus Tipo 2/genética , Retinopatia Diabética/genética , Dislipidemias/metabolismo , Lipídeos , Macrófagos/metabolismo , Perilipina-2/genética , Perilipina-2/metabolismo , PPAR gama/genética , PPAR gama/metabolismo , Retina/metabolismo
2.
Exp Eye Res ; 213: 108861, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34822853

RESUMO

Aberrant angiogenesis lies at the heart of a wide range of ocular pathologies such as proliferative diabetic retinopathy, wet age-related macular degeneration and retinopathy of prematurity. This study explores the anti-angiogenic activity of a novel small molecule investigative compound capable of inhibiting profilin1-actin interaction recently identified by our group. We demonstrate that our compound is capable of inhibiting migration, proliferation and angiogenic activity of microvascular endothelial cells in vitro as well as choroidal neovascularization (CNV) ex vivo. In mouse model of laser-injury induced CNV, intravitreal administration of this compound diminishes sub-retinal neovascularization. Finally, our preliminary structure-activity relationship study (SAR) demonstrates that this small molecule compound is amenable to improvement in biological activity through structural modifications.


Assuntos
Inibidores da Angiogênese/uso terapêutico , Neovascularização de Coroide/tratamento farmacológico , Neovascularização Retiniana/tratamento farmacológico , Actinas/antagonistas & inibidores , Animais , Linhagem Celular , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Neovascularização de Coroide/metabolismo , Modelos Animais de Doenças , Células Endoteliais/efeitos dos fármacos , Humanos , Injeções Intravítreas , Camundongos , Camundongos Endogâmicos C57BL , Profilinas/antagonistas & inibidores , Neovascularização Retiniana/metabolismo , Vasos Retinianos/citologia , Fator A de Crescimento do Endotélio Vascular/antagonistas & inibidores , Degeneração Macular Exsudativa/tratamento farmacológico , Degeneração Macular Exsudativa/metabolismo
3.
FASEB J ; 34(4): 5851-5862, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32141122

RESUMO

Retinal vascular diseases (RVD) have been identified as a major cause of blindness worldwide. These pathologies, including the wet form of age-related macular degeneration, retinopathy of prematurity, and diabetic retinopathy are currently treated by intravitreal delivery of anti-vascular endothelial growth factor (VEGF) agents. However, repeated intravitreal injections can lead to ocular complications and resistance to these treatments. Thus, there is a need to find new targeted therapies. Nucleolin regulates the endothelial cell (EC) activation and angiogenesis. In previous studies, we designed a pseudopeptide, N6L, that binds the nucleolin and blocks the tumor angiogenesis. In this study, the effect of N6L was investigated in two experimental models of retinopathies including oxygen-induced retinopathy (OIR) and choroidal neovascularization (CNV). We found that in mouse OIR, intraperitoneal injection of N6L is delivered to activated ECs and induced a 50% reduction of pathological neovascularization. The anti-angiogenic effect of N6L has been tested in CNV model in which the systemic injection of N6L induced a 33% reduction of angiogenesis. This effect is comparable to those obtained with VEGF-trap, a standard of care drug for RVD. Interestingly, with preventive and curative treatments, neoangiogenesis is inhibited by 59%. Our results have potential interest in the development of new therapies targeting other molecules than VEGF for RVD.


Assuntos
Inibidores da Angiogênese/farmacologia , Neovascularização de Coroide/prevenção & controle , Peptídeos/farmacologia , Fosfoproteínas/antagonistas & inibidores , Proteínas de Ligação a RNA/antagonistas & inibidores , Doenças Retinianas/prevenção & controle , Animais , Proliferação de Células , Neovascularização de Coroide/etiologia , Neovascularização de Coroide/metabolismo , Neovascularização de Coroide/patologia , Modelos Animais de Doenças , Injeções Intravítreas , Camundongos , Camundongos Endogâmicos C57BL , Oxigênio/efeitos adversos , Fosforilação , Doenças Retinianas/etiologia , Doenças Retinianas/metabolismo , Doenças Retinianas/patologia , Nucleolina
4.
Invest Ophthalmol Vis Sci ; 61(2): 11, 2020 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-32049345

RESUMO

Purpose: To study the potential effect of a gene therapy, designed to rescue the expression of dystrophin Dp71 in the retinas of Dp71-null mice, on retinal physiology. Methods: We recorded electroretinograms (ERGs) in Dp71-null and wild-type littermate mice. In dark-adapted eyes, responses to flashes of several strengths were measured. In addition, flash responses on a 25-candela/square meters background were measured. On- and Off-mediated responses to sawtooth stimuli and responses to photopic sine-wave modulation (3-30 Hz) were also recorded. After establishing the ERG phenotype, the ShH10-GFP adeno-associated virus (AAV), which has been previously shown to target specifically Müller glial cells (MGCs), was delivered intravitreously with or without (sham therapy) the Dp71 coding sequence under control of a CBA promoter. ERG recordings were repeated three months after treatment. Real-time quantitative PCR and Western blotting analyses were performed in order to quantify Dp71 expression in the retinas. Results: Dp71-null mice displayed reduced b-waves in dark- and light-adapted flash ERGs and smaller response amplitudes to photopic rapid-on sawtooth modulation and to sine-wave stimuli. Three months after intravitreal injections of the ShH10-GFP-2A-Dp71 AAV vector, ERG responses were completely recovered in treated eyes of Dp71-null mice. The functional rescue was associated with an overexpression of Dp71 in treated retinas. Conclusions: The present results show successful functional recovery accompanying the reexpression of Dp71. In addition, this experimental model sheds light on MGCs influencing ERG components, since previous reports showed that aquaporin 4 and Kir4.1 channels were mislocated in MGCs of Dp71-null mice, while their distribution could be normalized following intravitreal delivery of the same ShH10-GFP-2A-Dp71 vector.


Assuntos
Distrofina/metabolismo , Retina/fisiologia , Doenças Retinianas/fisiopatologia , Animais , Adaptação à Escuridão , Dependovirus/fisiologia , Distrofina/deficiência , Eletrorretinografia , Células Ependimogliais/metabolismo , Feminino , Terapia Genética/métodos , Vetores Genéticos/administração & dosagem , Genótipo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Retina/metabolismo , Doenças Retinianas/terapia
5.
J Clin Endocrinol Metab ; 105(4)2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-31589290

RESUMO

AIMS: Recent trials provide conflicting results on the association between glucagon-like peptide 1 receptor agonists (GLP-1RA) and diabetic retinopathy (DR). The aim of the AngioSafe type 2 diabetes (T2D) study was to determine the role of GLP-1RA in angiogenesis using clinical and preclinical models. METHODS: We performed two studies in humans. In study 1, we investigated the effect of GLP-1RA exposure from T2D diagnosis on the severity of DR, as diagnosed with retinal imaging (fundus photography). In study 2, a randomized 4-week trial, we assessed the effect of liraglutide on circulating hematopoietic progenitor cells (HPCs), and angio-miRNAs.We then studied the experimental effect of Exendin-4, on key steps of angiogenesis: in vitro on human endothelial cell proliferation, survival and three-dimensional vascular morphogenesis; and in vivo on ischemia-induced neovascularization of the retina in mice. RESULTS: In the cohort of 3154 T2D patients, 10% displayed severe DR. In multivariate analysis, sex, disease duration, glycated hemoglobin (HbA1c), micro- and macroangiopathy, insulin therapy and hypertension remained strongly associated with severe DR, while no association was found with GLP-1RA exposure (o 1.139 [0.800-1.622], P = .47). We further showed no effect of liraglutide on HPCs, and angio-miRNAs. In vitro, we demonstrated that exendin-4 had no effect on proliferation and survival of human endothelial cells, no effect on total length and number of capillaries. Finally, in vivo, we showed that exendin-4 did not exert any negative effect on retinal neovascularization. CONCLUSIONS: The AngioSafe T2D studies provide experimental and clinical data confirming no effect of GLP-1RA on angiogenesis and no association between GLP-1 exposure and severe DR.


Assuntos
Diabetes Mellitus Tipo 2/complicações , Retinopatia Diabética/patologia , Células Endoteliais/efeitos dos fármacos , Exenatida/farmacologia , Receptor do Peptídeo Semelhante ao Glucagon 1/agonistas , Neovascularização Patológica/patologia , Idoso , Animais , Biomarcadores/análise , Glicemia/análise , Diabetes Mellitus Tipo 2/tratamento farmacológico , Retinopatia Diabética/tratamento farmacológico , Retinopatia Diabética/etiologia , Feminino , Seguimentos , Humanos , Hipoglicemiantes/farmacologia , Masculino , Camundongos , Pessoa de Meia-Idade , Morfogênese , Neovascularização Patológica/tratamento farmacológico , Neovascularização Patológica/etiologia , Prognóstico , Retina/efeitos dos fármacos , Retina/metabolismo , Retina/patologia
6.
Animal Model Exp Med ; 2(4): 297-311, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31942562

RESUMO

BACKGROUND: Genetically engineered animals are essential for gaining a proper understanding of the disease mechanisms of cystic fibrosis (CF). The rat is a relevant laboratory model for CF because of its zootechnical capacity, size, and airway characteristics, including the presence of submucosal glands. METHODS: We describe the generation of a CF rat model (F508del) homozygous for the p.Phe508del mutation in the transmembrane conductance regulator (Cftr) gene. This model was compared to new Cftr -/- rats (CFTR KO). Target organs in CF were examined by histological staining of tissue sections and tooth enamel was quantified by micro-computed tomography. The activity of CFTR was evaluated by nasal potential difference (NPD) and short-circuit current measurements. The effect of VX-809 and VX-770 was analyzed on nasal epithelial primary cell cultures from F508del rats. RESULTS: Both newborn F508del and Knock out (KO) animals developed intestinal obstruction that could be partly compensated by special diet combined with an osmotic laxative. The two rat models exhibited CF phenotypic anomalies such as vas deferens agenesis and tooth enamel defects. Histology of the intestine, pancreas, liver, and lungs was normal. Absence of CFTR function in KO rats was confirmed ex vivo by short-circuit current measurements on colon mucosae and in vivo by NPD, whereas residual CFTR activity was observed in F508del rats. Exposure of F508del CFTR nasal primary cultures to a combination of VX-809 and VX-770 improved CFTR-mediated Cl- transport. CONCLUSIONS: The F508del rats reproduce the phenotypes observed in CFTR KO animals and represent a novel resource to advance the development of CF therapeutics.

7.
J Neuroinflammation ; 15(1): 85, 2018 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-29548329

RESUMO

BACKGROUND: The retinal pigment epithelium (RPE) is a monolayer of pigmented cells with important barrier and immuno-suppressive functions in the eye. We have previously shown that acute stimulation of RPE cells by tumor necrosis factor alpha (TNFα) downregulates the expression of OTX2 (Orthodenticle homeobox 2) and dependent RPE genes. We here investigated the long-term effects of TNFα on RPE cell morphology and key functions in vitro. METHODS: Primary porcine RPE cells were exposed to TNFα (at 0.8, 4, or 20 ng/ml per day) for 10 days. RPE cell morphology, phagocytosis, barrier- and immunosuppressive-functions were assessed. RESULTS: Chronic (10 days) exposure of primary RPE cells to TNFα increases RPE cell size and polynucleation, decreases visual cycle gene expression, impedes RPE tight-junction organization and transepithelial resistance, and decreases the immunosuppressive capacities of the RPE. TNFα-induced morphological- and transepithelial-resistance changes were prevented by concomitant Transforming Growth Factor ß inhibition. CONCLUSIONS: Our results indicate that chronic TNFα-exposure is sufficient to alter RPE morphology and impede cardinal features that define the differentiated state of RPE cells with striking similarities to the alterations that are observed with age in neurodegenerative diseases such as age-related macular degeneration.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Células Epiteliais/efeitos dos fármacos , Fatores de Transcrição Otx/metabolismo , Epitélio Pigmentado da Retina/citologia , Fator de Necrose Tumoral alfa/metabolismo , Actinas/metabolismo , Animais , Resistência Capilar/efeitos dos fármacos , Fusão Celular , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Lipopolissacarídeos/farmacologia , Monócitos/efeitos dos fármacos , Monócitos/metabolismo , Fagocitose/efeitos dos fármacos , Proteínas Proto-Oncogênicas/metabolismo , RNA Mensageiro/metabolismo , Rodopsina/metabolismo , Transativadores/metabolismo , Proteína da Zônula de Oclusão-1/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA