Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cell Div ; 16(1): 2, 2021 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-33514388

RESUMO

BACKGROUND: Cancer cell aggregation is a key process involved in the formation of tumor cell clusters. It has recently been shown that clusters of circulating tumor cells (CTCs) have an increased metastatic potential compared to isolated circulating tumor cells. Several widely used chemotherapeutic agents that target the cytoskeleton microtubules and cause cell cycle arrest at mitosis have been reported to modulate CTC number or the size of CTC clusters. RESULTS: In this study, we investigated in vitro the impact of mitotic arrest on the ability of breast tumor cells to form clusters. By using live imaging and quantitative image analysis, we found that MCF-7 cancer cell aggregation is compromised upon incubation with paclitaxel or vinorelbine, two chemotherapeutic drugs that target microtubules. In line with these results, we observed that MCF-7 breast cancer cells experimentally synchronized and blocked in metaphase aggregated poorly and formed loose clusters. To monitor clustering at the single-cell scale, we next developed and validated an in vitro assay based on live video-microscopy and custom-designed micro-devices. The study of cluster formation from MCF-7 cells that express the fluorescent marker LifeAct-mCherry using this new assay allowed showing that substrate anchorage-independent clustering of MCF-7 cells was associated with the formation of actin-dependent highly dynamic cell protrusions. Metaphase-synchronized and blocked cells did not display such protrusions, and formed very loose clusters that failed to compact. CONCLUSIONS: Altogether, our results suggest that mitotic arrest induced by microtubule-targeting anticancer drugs prevents cancer cell clustering and therefore, could reduce the metastatic potential of circulating tumor cells.

2.
Nat Med ; 24(9): 1360-1371, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30061698

RESUMO

Sarcopenia, the degenerative loss of skeletal muscle mass, quality and strength, lacks early diagnostic tools and new therapeutic strategies to prevent the frailty-to-disability transition often responsible for the medical institutionalization of elderly individuals. Herein we report that production of the endogenous peptide apelin, induced by muscle contraction, is reduced in an age-dependent manner in humans and rodents and is positively associated with the beneficial effects of exercise in older persons. Mice deficient in either apelin or its receptor (APLNR) presented dramatic alterations in muscle function with increasing age. Various strategies that restored apelin signaling during aging further demonstrated that this peptide considerably enhanced muscle function by triggering mitochondriogenesis, autophagy and anti-inflammatory pathways in myofibers as well as enhancing the regenerative capacity by targeting muscle stem cells. Taken together, these findings revealed positive regulatory feedback between physical activity, apelin and muscle function and identified apelin both as a tool for diagnosis of early sarcopenia and as the target of an innovative pharmacological strategy to prevent age-associated muscle weakness and restore physical autonomy.


Assuntos
Envelhecimento/patologia , Apelina/sangue , Sarcopenia/sangue , Adenilato Quinase/metabolismo , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Apelina/biossíntese , Receptores de Apelina/deficiência , Receptores de Apelina/metabolismo , Peso Corporal , Exercício Físico , Humanos , Cinética , Camundongos Endogâmicos C57BL , Células Musculares/metabolismo , Debilidade Muscular/tratamento farmacológico , Debilidade Muscular/patologia , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Biogênese de Organelas , Biossíntese de Proteínas , Proteínas Proto-Oncogênicas c-akt/metabolismo , Regeneração , Proteínas Quinases S6 Ribossômicas 70-kDa/metabolismo , Sarcopenia/patologia , Células Satélites de Músculo Esquelético/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA