Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 11(1): 21698, 2021 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-34737404

RESUMO

With a limited coding capacity of 4.7 kb, adeno-associated virus (AAV) genome has evolved over-lapping genes to maximise the usage of its genome. An example is the recently found ORF in the cap gene, encoding membrane-associated accessory protein (MAAP), located in the same genomic region as the VP1/2 unique domain, but in a different reading frame. This 13 KDa protein, unique to the dependovirus genus, is not homologous to any known protein. Our studies confirm that MAAP translation initiates from the first CTG codon found in the VP1 ORF2. We have further observed MAAP localised in the plasma membrane, in the membranous structures in close proximity to the nucleus and to the nuclear envelope by co-transfecting with plasmids encoding the wild-type AAV (wt-AAV) genome and adenovirus (Ad) helper genes. While keeping VP1/2 protein sequence identical, both inactivation and truncation of MAAP translation affected the emergence and intracellular distribution of the AAV capsid proteins. We have demonstrated that MAAP facilitates AAV replication and has a role in controlling Ad infection. Additionally, we were able to improve virus production and capsid integrity through a C-terminal truncation of MAAP while other modifications led to increased packaging of contaminating, non-viral DNA. Our results show that MAAP plays a significant role in AAV infection, with profound implications for the production of therapeutic AAV vectors.


Assuntos
Proteínas do Capsídeo/metabolismo , Dependovirus/metabolismo , Proteínas de Membrana/metabolismo , Capsídeo/metabolismo , Proteínas do Capsídeo/genética , Dependovirus/genética , Vetores Genéticos , Humanos , Proteínas de Membrana/fisiologia , Plasmídeos , Proteínas Virais/genética , Vírion/metabolismo , Montagem de Vírus , Replicação Viral
2.
mBio ; 12(1)2021 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-33531399

RESUMO

Human bocavirus 1 (HBoV1), a nonenveloped single-stranded DNA parvovirus, causes mild to life-threatening respiratory tract infections, acute otitis media, and encephalitis in young children. HBoV1 often persists in nasopharyngeal secretions for months, hampering diagnosis. It has also been shown to persist in pediatric palatine and adenoid tonsils, which suggests that lymphoid organs are reservoirs for virus spread; however, the tissue site and host cells remain unknown. Our aim was to determine, in healthy nonviremic children with preexisting HBoV1 immunity, the adenotonsillar persistence site(s), host cell types, and virus activity. We discovered that HBoV1 DNA persists in lymphoid germinal centers (GCs), but not in the corresponding tonsillar epithelium, and that the cell types harboring the virus are mainly naive, activated, and memory B cells and monocytes. Both viral DNA strands and both sides of the genome were detected, as well as infrequent mRNA. Moreover, we showed, in B-cell and monocyte cultures and ex vivo tonsillar B cells, that the cellular uptake of HBoV1 occurs via the Fc receptor (FcγRII) through antibody-dependent enhancement (ADE). This resulted in viral mRNA transcription, known to occur exclusively from double-stranded DNA in the nucleus, however, with no detectable productive replication. Confocal imaging with fluorescent virus-like particles moreover disclosed endocytosis. To which extent the active HBoV1 GC persistence has a role in chronic inflammation or B-cell maturation disturbances, and whether the virus can be reactivated, will be interesting topics for forthcoming studies.IMPORTANCE Human bocavirus 1 (HBoV1), a common pediatric respiratory pathogen, can persist in airway secretions for months hampering diagnosis. It also persists in tonsils, providing potential reservoirs for airway shedding, with the exact location, host cell types, and virus activity unknown. Our study provides new insights into tonsillar HBoV1 persistence. We observed HBoV1 persistence exclusively in germinal centers where immune maturation occurs, and the main host cells were B cells and monocytes. In cultured cell lines and primary tonsillar B cells, we showed the virus uptake to be significantly enhanced by HBoV1-specific antibodies, mediated by the cellular IgG receptor, leading to viral mRNA synthesis, but without detectable productive replication. Possible implications of such active viral persistence could be tonsillar inflammation, disturbances in immune maturation, reactivation, or cell death with release of virus DNA, explaining the long-lasting HBoV1 airway shedding.


Assuntos
Anticorpos Facilitadores , Centro Germinativo/virologia , Bocavirus Humano/imunologia , Tonsila Palatina/virologia , Infecções por Parvoviridae/virologia , Adolescente , Adulto , Idoso , Linfócitos B/virologia , Criança , Pré-Escolar , DNA Viral/análise , Endossomos/virologia , Humanos , Lactente , Recém-Nascido , Pessoa de Meia-Idade , Monócitos/virologia , Infecções por Parvoviridae/imunologia , Adulto Jovem
3.
J Virol ; 94(4)2020 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-31748386

RESUMO

Parvoviruses are an important platform for gene and cancer therapy. Their cell entry and the following steps, including nuclear import, are inefficient, limiting their use in therapeutic applications. Two models exist on parvoviral nuclear entry: the classical import of the viral capsid using nuclear transport receptors of the importin (karyopherin) family or the direct attachment of the capsid to the nuclear pore complex leading to the local disintegration of the nuclear envelope. Here, by laser scanning confocal microscopy and in situ proximity ligation analyses combined with coimmunoprecipitation, we show that infection requires importin ß-mediated access to the nuclear pore complex and nucleoporin 153-mediated interactions on the nuclear side. The importin ß-capsid interaction continued within the nucleoplasm, which suggests a mixed model of nuclear entry in which the classical nuclear import across the nuclear pore complex is accompanied by transient ruptures of the nuclear envelope, also allowing the passive entry of importin ß-capsid complexes into the nucleus.IMPORTANCE Parvoviruses are small DNA viruses that deliver their DNA into the postmitotic nuclei, which is an important step for parvoviral gene and cancer therapies. Limitations in virus-receptor interactions or endocytic entry do not fully explain the low transduction/infection efficiency, indicating a bottleneck after virus entry into the cytoplasm. We thus investigated the transfer of parvovirus capsids from the cytoplasm to the nucleus, showing that the nuclear import of the parvovirus capsid follows a unique strategy, which differs from classical nuclear import and those of other viruses.


Assuntos
Infecções por Parvoviridae/metabolismo , Parvovirus/metabolismo , beta Carioferinas/metabolismo , Transporte Ativo do Núcleo Celular , Animais , Capsídeo/metabolismo , Proteínas do Capsídeo/genética , Linhagem Celular , Núcleo Celular/virologia , Citoplasma/metabolismo , Citosol/metabolismo , Carioferinas/metabolismo , Membrana Nuclear/metabolismo , Poro Nuclear/metabolismo , Parvovirus/imunologia , Internalização do Vírus , Replicação Viral , alfa Carioferinas/metabolismo
4.
Sci Rep ; 8(1): 1152, 2018 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-29348472

RESUMO

Parvoviral genome translocation from the plasma membrane into the nucleus is a coordinated multistep process mediated by capsid proteins. We used fast confocal microscopy line scan imaging combined with image correlation methods including auto-, pair- and cross-correlation, and number and brightness analysis, to study the parvovirus entry pathway at the single-particle level in living cells. Our results show that the endosome-associated movement of virus particles fluctuates from fast to slow. Fast transit of single cytoplasmic capsids to the nuclear envelope is followed by slow movement of capsids and fast diffusion of capsid fragments in the nucleoplasm. The unique combination of image analyses allowed us to follow the fate of intracellular single virus particles and their interactions with importin ß revealing previously unknown dynamics of the entry pathway.


Assuntos
Proteínas do Capsídeo/metabolismo , Capsídeo/metabolismo , Núcleo Celular/virologia , Citosol/virologia , Parvovirus Canino/metabolismo , Vírion/metabolismo , Transporte Ativo do Núcleo Celular , Animais , Capsídeo/ultraestrutura , Proteínas do Capsídeo/ultraestrutura , Gatos , Linhagem Celular , Núcleo Celular/metabolismo , Núcleo Celular/ultraestrutura , Citosol/metabolismo , Citosol/ultraestrutura , Células Epiteliais , Corantes Fluorescentes/química , Expressão Gênica , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Processamento de Imagem Assistida por Computador , Microscopia de Força Atômica , Microscopia Confocal/métodos , Oócitos/metabolismo , Oócitos/ultraestrutura , Oócitos/virologia , Compostos Orgânicos/química , Parvovirus Canino/ultraestrutura , Espectrometria de Fluorescência/métodos , Vírion/ultraestrutura , Xenopus laevis , beta Carioferinas/genética , beta Carioferinas/metabolismo
5.
Nat Commun ; 8: 14930, 2017 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-28374737

RESUMO

Parvovirus B19 (B19V) DNA persists lifelong in human tissues, but the cell type harbouring it remains unclear. We here explore B19V DNA distribution in B, T and monocyte cell lineages of recently excised tonsillar tissues from 77 individuals with an age range of 2-69 years. We show that B19V DNA is most frequent and abundant among B cells, and within them we find a B19V genotype that vanished from circulation >40 years ago. Since re-infection or re-activation are unlikely with this virus type, this finding supports the maintenance of pathogen-specific humoral immune responses as a consequence of B-cell long-term survival rather than continuous replenishment of the memory pool. Moreover, we demonstrate the mechanism of B19V internalization to be antibody dependent in two B-cell lines as well as in ex vivo isolated tonsillar B cells. This study provides direct evidence for a cell type accountable for B19V DNA tissue persistence.


Assuntos
Linfócitos B/imunologia , Tonsila Palatina/imunologia , Infecções por Parvoviridae/imunologia , Parvovirus B19 Humano/imunologia , Adolescente , Adulto , Idoso , Anticorpos Antivirais/imunologia , Linfócitos B/virologia , Linhagem Celular , Linhagem Celular Tumoral , Células Cultivadas , Criança , Pré-Escolar , DNA Viral/genética , DNA Viral/imunologia , Genótipo , Humanos , Pessoa de Meia-Idade , Tonsila Palatina/virologia , Infecções por Parvoviridae/diagnóstico , Infecções por Parvoviridae/virologia , Parvovirus B19 Humano/genética , Parvovirus B19 Humano/fisiologia , Células U937 , Adulto Jovem
6.
PLoS One ; 9(2): e89979, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24587164

RESUMO

"Epigenetherapy" alters epigenetic status of the targeted chromatin and modifies expression of the endogenous therapeutic gene. In this study we used lentiviral in vivo delivery of small hairpin RNA (shRNA) into hearts in a murine infarction model. shRNA complementary to the promoter of vascular endothelial growth factor (VEGF-A) was able to upregulate endogenous VEGF-A expression. Histological and multiphoton microscope analysis confirmed the therapeutic effect in the transduced hearts. Magnetic resonance imaging (MRI) showed in vivo that the infarct size was significantly reduced in the treatment group 14 days after the epigenetherapy. Importantly, we show that promoter-targeted shRNA upregulates all isoforms of endogenous VEGF-A and that an intact hairpin structure is required for the shRNA activity. In conclusion, regulation of gene expression at the promoter level is a promising new treatment strategy for myocardial infarction and also potentially useful for the upregulation of other endogenous genes.


Assuntos
Epigênese Genética , Infarto do Miocárdio/genética , Infarto do Miocárdio/patologia , Regulação para Cima/genética , Fator A de Crescimento do Endotélio Vascular/genética , Animais , Sequência de Bases , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Metilação de DNA , Inativação Gênica , Sequências Repetidas Invertidas/genética , Masculino , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Infarto do Miocárdio/metabolismo , Fosfoproteínas/metabolismo , Regiões Promotoras Genéticas/genética , Isoformas de Proteínas/genética , RNA Interferente Pequeno/genética , Transcrição Gênica/genética , Ativação Transcricional
7.
J Virol ; 84(10): 5391-403, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20219935

RESUMO

The replication protein NS1 is essential for genome replication and protein production in parvoviral infection. Many of its functions, including recognition and site-specific nicking of the viral genome, helicase activity, and transactivation of the viral capsid promoter, are dependent on ATP. An ATP-binding pocket resides in the middle of the modular NS1 protein in a superfamily 3 helicase domain. Here we have identified key ATP-binding amino acid residues in canine parvovirus (CPV) NS1 protein and mutated amino acids from the conserved A motif (K406), B motif (E444 and E445), and positively charged region (R508 and R510). All mutations prevented the formation of infectious viruses. When provided in trans, all except the R508A mutation reduced infectivity in a dominant-negative manner, possibly by hindering genome replication. These results suggest that the conserved R510 residue, but not R508, is the arginine finger sensory element of CPV NS1. Moreover, fluorescence recovery after photobleaching (FRAP), complemented by computer simulations, was used to assess the binding properties of mutated fluorescent fusion proteins. These experiments identified ATP-dependent and -independent binding modes for NS1 in living cells. Only the K406M mutant had a single binding site, which was concluded to indicate ATP-independent binding. Furthermore, our data suggest that DNA binding of NS1 is dependent on its ability to both bind and hydrolyze ATP.


Assuntos
Trifosfato de Adenosina/metabolismo , Parvovirus Canino/fisiologia , Proteínas não Estruturais Virais/metabolismo , Sequência de Aminoácidos , Substituição de Aminoácidos/genética , Animais , Sítios de Ligação , Gatos , Linhagem Celular , Cães , Hidrólise , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Ligação Proteica , Estrutura Terciária de Proteína , Alinhamento de Sequência
8.
J Biotechnol ; 145(2): 111-9, 2010 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-19903502

RESUMO

Baculoviruses can express transgenes under mammalian promoters in a wide range of vertebrate cells. However, the success of transgene expression is dependent on both the appropriate cell type and culture conditions. We studied the mechanism behind the substantial effect of the cell culture medium on efficiency of the baculovirus transduction in different cell lines. We tested six cell culture mediums; the highest transduction efficiency was detected in the presence of RPMI 1640 medium. Vimentin, a major component of type III intermediate filaments, was reorganized in the optimized medium, which associated with enhanced nuclear entry of baculoviruses. Accordingly, the phosphorylation pattern of vimentin was changed in the studied cell lines. These results suggest that vimentin has an important role in baculovirus entry into vertebrate cells. Enhanced gene delivery in the optimized medium was observed also with adenoviruses and lentiviruses. The results highlight the general importance of the culture medium in the assembly of the cytoskeleton network and in viral gene delivery.


Assuntos
Baculoviridae/genética , Técnicas de Cultura de Células/métodos , Meios de Cultura/metabolismo , DNA Viral/genética , Transdução Genética/métodos , Vimentina/metabolismo , Animais , Células Cultivadas , Meios de Cultura/química , Humanos , Vimentina/química
9.
PLoS One ; 4(4): e5093, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19352496

RESUMO

The prototype baculovirus, Autographa californica multiple nucleopolyhedrovirus, an insect pathogen, holds great potential as a gene therapy vector. To develop transductional targeting and gene delivery by baculovirus, we focused on characterizing the nature and regulation of its uptake in human cancer cells. Baculovirus entered the cells along fluid-phase markers from the raft areas into smooth-surfaced vesicles devoid of clathrin. Notably, regulators associated with macropinocytosis, namely EIPA, Pak1, Rab34, and Rac1, had no significant effect on viral transduction, and the virus did not induce fluid-phase uptake. The internalization and nuclear uptake was, however, affected by mutants of RhoA, and of Arf6, a regulator of clathrin-independent entry. Furthermore, the entry of baculovirus induced ruffle formation and triggered the uptake of fluorescent E. coli bioparticles. To conclude, baculovirus enters human cells via a clathrin-independent pathway, which is able to trigger bacterial uptake. This study increases our understanding of virus entry strategies and gives new insight into baculovirus-mediated gene delivery in human cells.


Assuntos
Clatrina/fisiologia , Endocitose , Escherichia coli/fisiologia , Nucleopoliedrovírus/fisiologia , Fator 6 de Ribosilação do ADP , Fatores de Ribosilação do ADP/fisiologia , Adenosina Trifosfatases/fisiologia , Sequência de Bases , Linhagem Celular , Humanos , Lipídeos de Membrana/metabolismo , Fagocitose , Interferência de RNA
10.
J Gene Med ; 10(9): 1019-31, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18655234

RESUMO

BACKGROUND: Tumor-associated cells and vasculature express attractive molecular markers for site-specific vector targeting. To attain tumor-selective tropism, we recently developed a baculovirus vector displaying the lymphatic homing peptide LyP-1, originally identified by ex vivo/in vivo screening of phage display libraries, on the viral envelope by fusion to the transmembrane anchor of vesicular stomatitis virus G-protein. METHODS: In the present study, we explored the specificity and kinetics of viral binding and internalization as well as in vivo tumor homing of the LyP-1 displaying virus to elucidate the applicability of baculovirus for targeted therapies. RESULTS: We demonstrated that the LyP-1 peptide contributes to saturable binding of baculovirus in human MDA-MB-435 and HepG2 carcinoma cells and escalates the kinetics of viral internalization leading to earlier nuclear accumulation and enhanced transgene expression. The LyP-1 displaying virus also showed stronger competitiveness against transduction with wild-type baculovirus, suggesting involvement of a specific receptor in cellular attachment and entry. Following intravenous injections, the modified virus accumulated within the human MDA-MB-435 and MDA-MB-231 carcinoma xenografts in mice with higher specificity and efficiency than the control virus. Targeting of the modified virus was more specific in the MDA-MB-435 than in the MDA-MB-231 xenografts as demonstrated by higher tumor accumulation and lower distribution in nontarget organs. No apparent cytotoxicity was associated with the surface modification. CONCLUSIONS: This first demonstration of in vivo tumor targeting of a systemically administered, tropism-modified baculoviral vector highlights the potential of baculovirus-mediated targeted therapies.


Assuntos
Baculoviridae/genética , Neoplasias/terapia , Peptídeos Cíclicos/genética , Animais , Sítios de Ligação , Linhagem Celular Tumoral , Técnicas de Transferência de Genes , Terapia Genética , Vetores Genéticos , Humanos , Vasos Linfáticos/metabolismo , Glicoproteínas de Membrana/genética , Camundongos , Camundongos Nus , Neoplasias/genética , Peptídeos Cíclicos/metabolismo , Transdução Genética , Transgenes , Proteínas do Envelope Viral/genética
11.
Cell Microbiol ; 10(3): 667-81, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18042259

RESUMO

Baculovirus, Autographa californica multiple nucleopolyhedrovirus (AcMNPV), has the ability to transduce mammalian cell lines without replication. The general objective of this study was to detect the transcription and expression of viral immediate-early genes in human cells and to examine the interactions between viral components and subnuclear structures. Viral capsids were seen in large, discrete foci in nuclei of both dividing and non-dividing human cells. Concurrently, the transcription of viral immediate-early transregulator genes (ie-1, ie-2) and translation of IE-2 protein were detected. Quantitative microscopy imaging and analysis showed that virus transduction altered the size of promyelocytic leukaemia nuclear bodies, which are suggested to be involved in replication and transcription of various viruses. Furthermore, altered distribution of the chromatin marker Draq5 and histone core protein (H2B) in transduced cells indicated that the virus was able to induce remodelling of the host cell chromatin. To conclude, this study shows that the non-replicative insect virus, baculovirus and its proteins can induce multiple changes in the cellular machinery of human cells.


Assuntos
Expressão Gênica , Genes Precoces , Nucleopoliedrovírus/genética , Proteínas Virais/biossíntese , Animais , Antraquinonas/metabolismo , Capsídeo/metabolismo , Linhagem Celular , Núcleo Celular/química , Núcleo Celular/virologia , Montagem e Desmontagem da Cromatina , Histonas/metabolismo , Humanos , Camundongos , Microscopia Confocal , Microscopia de Fluorescência
12.
BMC Biotechnol ; 7: 1, 2007 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-17199888

RESUMO

BACKGROUND: The cell-penetrating peptide derived from the Human immunodeficiency virus-1 transactivator protein Tat possesses the capacity to promote the effective uptake of various cargo molecules across the plasma membrane in vitro and in vivo. The objective of this study was to characterize the uptake and delivery mechanisms of a novel streptavidin fusion construct, TAT47-57-streptavidin (TAT-SA, 60 kD). SA represents a potentially useful TAT-fusion partner due to its ability to perform as a versatile intracellular delivery vector for a wide array of biotinylated molecules or cargoes. RESULTS: By confocal and immunoelectron microscopy the majority of internalized TAT-SA was shown to accumulate in perinuclear vesicles in both cancer and non-cancer cell lines. The uptake studies in living cells with various fluorescent endocytic markers and inhibiting agents suggested that TAT-SA is internalized into cells efficiently, using both clathrin-mediated endocytosis and lipid-raft-mediated macropinocytosis. When endosomal release of TAT-SA was enhanced through the incorporation of a biotinylated, pH-responsive polymer poly(propylacrylic acid) (PPAA), nuclear localization of TAT-SA and TAT-SA bound to biotin was markedly improved. Additionally, no significant cytotoxicity was detected in the TAT-SA constructs. CONCLUSION: This study demonstrates that TAT-SA-PPAA is a potential non-viral vector to be utilized in protein therapeutics to deliver biotinylated molecules both into cytoplasm and nucleus of human cells.


Assuntos
Sistemas de Liberação de Medicamentos/métodos , Produtos do Gene tat/farmacocinética , Estreptavidina/farmacocinética , Produtos do Gene tat/genética , Vetores Genéticos/genética , Células HeLa , Humanos , Engenharia de Proteínas/métodos , Proteínas Recombinantes de Fusão/farmacocinética , Estreptavidina/genética , Vírus/genética
14.
J Virol ; 77(19): 10270-9, 2003 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-12970411

RESUMO

Canine parvovirus (CPV), a model virus for the study of parvoviral entry, enters host cells by receptor-mediated endocytosis, escapes from endosomal vesicles to the cytosol, and then replicates in the nucleus. We examined the role of the microtubule (MT)-mediated cytoplasmic trafficking of viral particles toward the nucleus. Immunofluorescence and immunoelectron microscopy showed that capsids were transported through the cytoplasm into the nucleus after cytoplasmic microinjection but that in the presence of MT-depolymerizing agents, viral capsids were unable to reach the nucleus. The nuclear accumulation of capsids was also reduced by microinjection of an anti-dynein antibody. Moreover, electron microscopy and light microscopy experiments demonstrated that viral capsids associate with tubulin and dynein in vitro. Coprecipitation studies indicated that viral capsids interact with dynein. When the cytoplasmic transport process was studied in living cells by microinjecting fluorescently labeled capsids into the cytoplasm of cells containing fluorescent tubulin, capsids were found in close contact with MTs. These results suggest that intact MTs and the motor protein dynein are required for the cytoplasmic transport of CPV capsids and contribute to the accumulation of the capsid in the nucleus.


Assuntos
Transporte Ativo do Núcleo Celular , Capsídeo/metabolismo , Núcleo Celular/virologia , Citoesqueleto/fisiologia , Dineínas/fisiologia , Microtúbulos/fisiologia , Parvovirus Canino/fisiologia , Animais , Gatos , Citosol/virologia , Microscopia Eletrônica
15.
J Virol ; 76(9): 4401-11, 2002 May.
Artigo em Inglês | MEDLINE | ID: mdl-11932407

RESUMO

Canine parvovirus (CPV) is a nonenveloped virus with a 5-kb single-stranded DNA genome. Lysosomotropic agents and low temperature are known to prevent CPV infection, indicating that the virus enters its host cells by endocytosis and requires an acidic intracellular compartment for penetration into the cytoplasm. After escape from the endocytotic vesicles, CPV is transported to the nucleus for replication. In the present study the intracellular entry pathway of the canine parvovirus in NLFK (Nordisk Laboratory feline kidney) cells was studied. After clustering in clathrin-coated pits and being taken up in coated vesicles, CPV colocalized with coendocytosed transferrin in endosomes resembling recycling endosomes. Later, CPV was found to enter, via late endosomes, a perinuclear vesicular compartment, where it colocalized with lysosomal markers. There was no indication of CPV entry into the trans-Golgi or the endoplasmic reticulum. Similar results were obtained both with full and with empty capsids. The data thus suggest that CPV or its DNA was released from the lysosomal compartment to the cytoplasm to be then transported to the nucleus. Electron microscopy analysis revealed endosomal vesicles containing CPV to be associated with microtubules. In the presence of nocodazole, a microtubule-disrupting drug, CPV entry was blocked and the virus was found in peripheral vesicles. Thus, some step(s) of the entry process were dependent on microtubules. Microinjection of antibodies to dynein caused CPV to remain in pericellular vesicles. This suggests an important role for the motor protein dynein in transporting vesicles containing CPV along the microtubule network.


Assuntos
Dineínas/metabolismo , Endossomos/fisiologia , Lisossomos/fisiologia , Parvovirus Canino/patogenicidade , Animais , Linhagem Celular , Cães , Endocitose , Endossomos/virologia , Hibridização in Situ Fluorescente , Lisossomos/virologia , Microscopia Confocal , Microscopia Imunoeletrônica , Microtúbulos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA