Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Curr Opin Immunol ; 80: 102282, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36716578

RESUMO

Nonreplicating adenovirus-based vectors have been successfully implemented as prophylactic vaccines against infectious viral diseases and induce protective cellular and humoral responses. Differences in the mechanisms of cellular entry or endosomal escape of these vectors contribute to differences in innate immune sensing between adenovirus species. Innate immune responses to adenovirus-based vaccines, such as interferon signaling, have been reported to affect the development of adaptive responses in preclinical studies, although limited data are available in humans. Understanding the mechanisms of these early events is critical for the development of vaccines that elicit effective and durable adaptive immune responses while maintaining an acceptable reactogenicity profile.


Assuntos
Vacinas contra Adenovirus , Humanos , Internalização do Vírus , Imunidade Inata , Imunidade Humoral , Adenoviridae/genética , Vetores Genéticos/genética
2.
NPJ Vaccines ; 6(1): 39, 2021 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-33741993

RESUMO

Previously we have shown that a single dose of recombinant adenovirus serotype 26 (Ad26) vaccine expressing a prefusion stabilized SARS-CoV-2 spike antigen (Ad26.COV2.S) is immunogenic and provides protection in Syrian hamster and non-human primate SARS-CoV-2 infection models. Here, we investigated the immunogenicity, protective efficacy, and potential for vaccine-associated enhanced respiratory disease (VAERD) mediated by Ad26.COV2.S in a moderate disease Syrian hamster challenge model, using the currently most prevalent G614 spike SARS-CoV-2 variant. Vaccine doses of 1 × 109 and 1 × 1010 VP elicited substantial neutralizing antibodies titers and completely protected over 80% of SARS-CoV-2 inoculated Syrian hamsters from lung infection and pneumonia but not upper respiratory tract infection. A second vaccine dose further increased neutralizing antibody titers that was associated with decreased infectious viral load in the upper respiratory tract after SARS-CoV-2 challenge. Suboptimal non-protective immune responses elicited by low-dose A26.COV2.S vaccination did not exacerbate respiratory disease in SARS-CoV-2-inoculated Syrian hamsters with breakthrough infection. In addition, dosing down the vaccine allowed to establish that binding and neutralizing antibody titers correlate with lower respiratory tract protection probability. Overall, these preclinical data confirm efficacy of a one-dose vaccine regimen with Ad26.COV2.S in this G614 spike SARS-CoV-2 virus variant Syrian hamster model, show the added benefit of a second vaccine dose, and demonstrate that there are no signs of VAERD under conditions of suboptimal immunity.

3.
J Immunol ; 205(10): 2873-2882, 2020 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-33008952

RESUMO

The TLR5 agonist flagellin is a potent adjuvant and is currently being developed for use in vaccines. The mechanisms that drive flagellin's activity are influenced by its administration route. Previous studies showed that lung structural cells (especially epithelial cells lining the conducting airways) are pivotal for the efficacy of intranasally administered flagellin-containing vaccines. In this study, we looked at how the airway epithelial cells (AECs) regulate the flagellin-dependent stimulation of Ag-specific CD4+ T cells and the Ab response in mice. Our results demonstrate that after sensing flagellin, AECs trigger the release of GM-CSF in a TLR5-dependent fashion and the doubling of the number of activated type 2 conventional dendritic cells (cDC2s) in draining lymph nodes. Furthermore, the neutralization of GM-CSF reduced cDC2s activation. This resulted in lower of Ag-specific CD4+ T cell count and Ab titers in mice. Our data indicate that during pulmonary immunization, the GM-CSF released by AECs orchestrates the cross-talk between cDC2s and CD4+ T cells and thus drives flagellin's adjuvant effect.


Assuntos
Células Epiteliais/metabolismo , Flagelina/imunologia , Fator Estimulador de Colônias de Granulócitos e Macrófagos/metabolismo , Mucosa Respiratória/imunologia , Vacinas/imunologia , Adjuvantes Imunológicos/administração & dosagem , Administração Intranasal , Animais , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Comunicação Celular/imunologia , Células Cultivadas , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Células Epiteliais/imunologia , Feminino , Flagelina/administração & dosagem , Imunidade nas Mucosas , Imunogenicidade da Vacina , Linfonodos/imunologia , Linfonodos/metabolismo , Camundongos , Camundongos Knockout , Modelos Animais , Cultura Primária de Células , Mucosa Respiratória/citologia , Mucosa Respiratória/metabolismo , Receptor 5 Toll-Like/agonistas , Receptor 5 Toll-Like/genética , Vacinas/administração & dosagem
4.
Trends Microbiol ; 26(5): 423-435, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29173868

RESUMO

Motility is often a pathogenicity determinant of bacteria targeting mucosal tissues. Flagella constitute the machinery that propels bacteria into appropriate niches. Besides motility, the structural component, flagellin, which forms the flagella, targets Toll-like receptor 5 (TLR5) to activate innate immunity. The compartmentalization of flagellin-mediated immunity and the contribution of epithelial cells and dendritic cells in detecting flagellin within luminal and basal sides are highlighted here, respectively. While a direct stimulation of the epithelium mainly results in recruitment of immune cells and production of antimicrobial molecules, TLR5 engagement on parenchymal dendritic cells can contribute to the stimulation of innate lymphocytes such as type 3 innate lymphoid cells, as well as T helper cells. This review, therefore, illustrates how the innate and adaptive immunity to flagellin are differentially regulated by the epithelium and the dendritic cells in response to pathogens that either colonize or invade mucosa.


Assuntos
Anti-Infecciosos/farmacologia , Bactérias/imunologia , Flagelina/imunologia , Imunidade Adaptativa , Anti-Infecciosos/metabolismo , Bactérias/patogenicidade , Células Dendríticas/imunologia , Células Epiteliais/imunologia , Imunidade Inata , Interleucinas/metabolismo , Linfócitos/imunologia , Receptor 5 Toll-Like/metabolismo , Interleucina 22
5.
PLoS One ; 10(7): e0133595, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26208356

RESUMO

In the HIV vaccine field, there is a need to produce highly immunogenic forms of the Env protein with the capacity to trigger broad B and T-cell responses. Here, we report the generation and characterization of a chimeric HIV-1 gp120 protein (termed gp120-14K) by fusing gp120 from clade B with the vaccinia virus (VACV) 14K oligomeric protein (derived from A27L gene). Stable CHO cell lines expressing HIV-1 gp120-14K protein were generated and the protein purified was characterized by size exclusion chromatography, electron microscopy and binding to anti-Env antibodies. These approaches indicate that gp120-14K protein is oligomeric and reacts with a wide spectrum of HIV-1 neutralizing antibodies. Furthermore, in human monocyte-derived dendritic cells (moDCs), gp120-14K protein upregulates the levels of several proinflammatory cytokines and chemokines associated with Th1 innate immune responses (IL-1ß, IFN-γ, IL-6, IL-8, IL-12, RANTES). Moreover, we showed in a murine model, that a heterologous prime/boost immunization protocol consisting of a DNA prime with a plasmid expressing gp120-14K protein followed by a boost with MVA-B [a recombinant modified vaccinia virus Ankara (MVA) expressing HIV-1 gp120, Gag, Pol and Nef antigens from clade B], generates stronger, more polyfunctional, and greater effector memory HIV-1-specific CD4+ and CD8+ T-cell immune responses, than immunization with DNA-gp120/MVA-B. The DNA/MVA protocol was superior to immunization with the combination of protein/MVA and the latter was superior to a prime/boost of MVA/MVA or protein/protein. In addition, these immunization protocols enhanced antibody responses against gp120 of the class IgG2a and IgG3, together favoring a Th1 humoral immune response. These results demonstrate that fusing HIV-1 gp120 with VACV 14K forms an oligomeric protein which is highly antigenic as it activates a Th1 innate immune response in human moDCs, and in vaccinated mice triggers polyfunctional HIV-1-specific adaptive and memory T-cell immune responses, as well as humoral responses. This novel HIV-1 gp120-14K immunogen might be considered as an HIV vaccine candidate for broad T and B-cell immune responses.


Assuntos
Proteínas de Transporte/imunologia , Antígenos HIV/imunologia , Proteína gp120 do Envelope de HIV/imunologia , HIV-1/imunologia , Proteínas Recombinantes de Fusão/imunologia , Proteínas Virais de Fusão/imunologia , Vacinas contra a AIDS/genética , Vacinas contra a AIDS/imunologia , Imunidade Adaptativa , Animais , Anticorpos Neutralizantes/imunologia , Antígenos CD4/metabolismo , Proteínas de Transporte/genética , Linhagem Celular , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Anticorpos Anti-HIV/imunologia , Antígenos HIV/genética , Proteína gp120 do Envelope de HIV/genética , HIV-1/genética , Humanos , Imunidade Inata , Imunoglobulina G/imunologia , Memória Imunológica , Proteínas de Membrana , Polissacarídeos/metabolismo , Ligação Proteica , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/isolamento & purificação , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Células Th1/imunologia , Células Th1/metabolismo , Proteínas Virais de Fusão/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA