Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Hazard Mater ; 468: 133814, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38412802

RESUMO

The oil industry's expansion and increased operational activity at older installations, along with their demolition, contribute to rising cumulative pollution and a heightened risk of accidental oil spills. The lesser sandeel (Ammodytes marinus) is a keystone prey species in the North Sea and coastal systems. Their eggs adhere to the seabed substrate making them particularly vulnerable to oil exposure during embryonic development. We evaluated the sensitivity of sandeel embryos to crude oil in a laboratory by exposing them to dispersed oil at concentrations of 0, 15, 50, and 150 µg/L oil between 2 and 16 days post-fertilization. We assessed water and tissue concentrations of THC and tPAH, cyp1a expression, lipid distribution in the eyes, head and trunk, and morphological and functional deformities. Oil droplets accumulated on the eggshell in all oil treatment groups, to which the embryo responded by a dose-dependent rise in cyp1a expression. The oil exposure led to only minor sublethal deformities in the upper jaw and otic vesicle. The findings suggest that lesser sandeel embryos are resilient to crude oil exposure. The lowest observed effect level documented in this study was 36 µg THC/L and 3 µg tPAH/L. The inclusion of these species-specific data in risk assessment models will enhance the precision of risk evaluations for the North Atlantic ecosystems.


Assuntos
Poluição por Petróleo , Petróleo , Poluentes Químicos da Água , Animais , Petróleo/toxicidade , Casca de Ovo , Ecossistema , Água , Poluentes Químicos da Água/toxicidade
2.
Sci Total Environ ; 904: 166951, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37696403

RESUMO

Laboratory experiments provide knowledge of species-specific effects thresholds that are used to parameterize impact assessment models of oil contamination on marine ecosystems. Such experiments typically place individuals of species and life stages in tanks with different contaminant concentrations. Exposure concentrations are usually fixed, and the individuals experience a shock treatment being moved from clean water directly into contaminated water and then back to clean water. In this study, we use a coupled numerical model that simulates ocean currents and state, oil dispersal and fate, and early life stages of fish to quantify oil exposure histories, specifically addressing oil spill scenarios of high rates and long durations. By including uptake modelling we also investigate the potential of buffering transient high peaks in exposure. Our simulation results are the basis for a recommendation on the design of laboratory experiments to improve impact assessment model development and parameterization. We recommend an exposure profile with three main phases: i) a gradual increase in concentration, ii) a transient peak that is well above the subsequent level, and iii) a plateau of fixed concentration lasting ∼3 days. In addition, a fourth phase with a slow decrease may be added.


Assuntos
Poluição por Petróleo , Petróleo , Poluentes Químicos da Água , Animais , Ecossistema , Peixes , Poluição da Água , Água , Poluentes Químicos da Água/análise
3.
Mar Pollut Bull ; 190: 114843, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36965263

RESUMO

Atlantic haddock (Melanogrammus aeglefinus) embryos bind dispersed crude oil droplets to the eggshell and are consequently highly susceptible to toxicity from spilled oil. We established thresholds for developmental toxicity and identified any potential long-term or latent adverse effects that could impair the growth and survival of individuals. Embryos were exposed to oil for eight days (10, 80 and 300 µg oil/L, equivalent to 0.1, 0.8 and 3.0 µg TPAH/L). Acute and delayed mortality were observed at embryonic, larval, and juvenile stages with IC50 = 2.2, 0.39, and 0.27 µg TPAH/L, respectively. Exposure to 0.1 µg TPAH/L had no negative effect on growth or survival. However, yolk sac larvae showed significant reduction in the outgrowth (ballooning) of the cardiac ventricle in the absence of other extracardiac morphological defects. Due to this propensity for latent sublethal developmental toxicity, we recommend an effect threshold of 0.1 µg TPAH/L for risk assessment models.


Assuntos
Gadiformes , Hidrocarbonetos Aromáticos , Poluição por Petróleo , Petróleo , Hidrocarbonetos Policíclicos Aromáticos , Poluentes Químicos da Água , Humanos , Animais , Petróleo/toxicidade , Petróleo/análise , Gadiformes/metabolismo , Larva/metabolismo , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Hidrocarbonetos Policíclicos Aromáticos/metabolismo , Poluentes Químicos da Água/análise
4.
Mar Pollut Bull ; 184: 114207, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36228407

RESUMO

We simulate the combined natural and pollutant-induced survival of early life stages of NEA cod and haddock, and the impact on the adult populations in response to the time of a major oil spill in a single year. Our simulations reveal how dynamic ocean processes, controlling both oil transport and fate and the frequency of interactions of oil with drifting fish eggs and larvae, mediate the magnitude of population losses due to an oil spill. The largest impacts on fish early life stages occurred for spills initiated in Feb-Mar, concomitant with the initial rise in marine productivity and the earliest phase of the spawning season. The reproductive health of the adult fish populations was maintained in all scenarios. The study demonstrates the application of a simulation system that provides managers with information for the planning of development activities and for the protection of fisheries resources from potential impacts.


Assuntos
Poluentes Ambientais , Gadiformes , Poluição por Petróleo , Animais , Pesqueiros , Peixes
6.
Environ Sci Technol ; 54(21): 13879-13887, 2020 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-32990430

RESUMO

Exposure to environmentally relevant concentrations of oil could impact survival of fish larvae in situ through subtle effects on larval behavior. During the larval period, Atlantic haddock (Melanogrammus aeglefinus) are transported toward nursery grounds by ocean currents and active swimming, which can modify their drift route. Haddock larvae are sensitive to dispersed oil; however, whether exposure to oil during development impacts the ability of haddock larvae to swim in situ is unknown. Here, we exposed Atlantic haddock embryos to 10 and 80 µg oil/L (0.1 and 0.8 µg ∑PAH/L) of crude oil for 8 days and used a novel approach to measure its effect on the larval swimming behavior in situ. We assessed the swimming behavior of 138 haddock larvae in situ, in the North Sea, using a transparent drifting chamber. Expression of cytochrome P4501a (cyp1a) was also measured. Exposure to 10 and 80 µg oil/L significantly reduced the average in situ routine swimming speed by 30-40% compared to the controls. Expression of cyp1a was significantly higher in both exposed groups. This study reports key information for improving oil spill risk assessment models and presents a novel approach to study sublethal effects of pollutants on fish larvae in situ.


Assuntos
Petróleo , Poluentes Químicos da Água , Animais , Citocromos , Larva , Mar do Norte , Natação , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
7.
Mar Pollut Bull ; 129(1): 336-342, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29680556

RESUMO

It has been proposed that the multiple pressures of fishing and petroleum activities impact fish stocks in synergy, as fishing-induced demographic changes in a stock may lead to increased sensitivity to detrimental effects of acute oil spills. High fishing pressure may erode the demographic structure of fish stocks, lead to less diverse spawning strategies, and more concentrated distributions of offspring in space and time. Hence an oil spill may potentially hit a larger fraction of a year-class of offspring. Such a link between demographic structure and egg distribution was recently demonstrated for the Northeast Arctic stock of Atlantic cod for years 1959-1993. We here estimate that this variation translates into a two-fold variation in the maximal proportion of cod eggs potentially exposed to a large oil spill. With this information it is possible to quantitatively account for demographic structure in prospective studies of population effects of possible oil spills.


Assuntos
Conservação dos Recursos Naturais/métodos , Monitoramento Ambiental/métodos , Pesqueiros , Gadus morhua/crescimento & desenvolvimento , Poluição por Petróleo/efeitos adversos , Animais , Regiões Árticas , Simulação por Computador , Dinâmica Populacional , Reprodução
8.
Mar Pollut Bull ; 126: 63-73, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29421135

RESUMO

We simulate oil spills of 1500 and 4500m3/day lasting 14, 45, and 90days in the spawning grounds of the commercial fish species, Northeast Arctic cod. Modeling the life history of individual fish eggs and larvae, we predict deviations from the historical pattern of recruitment to the adult population due to toxic oil exposures. Reductions in survival for pelagic stages of cod were 0-10%, up to a maximum of 43%. These reductions resulted in a decrease in adult cod biomass of <3% for most scenarios, up to a maximum of 12%. In all simulations, the adult population remained at full reproductive potential with a sufficient number of juveniles surviving to replenish the population. The diverse age distribution helps protect the adult cod population from reductions in a single year's recruitment after a major oil spill. These results provide insights to assist in managing oil spill impacts on fisheries.


Assuntos
Gadiformes , Poluição por Petróleo , Animais , Simulação por Computador , Meio Ambiente , Pesqueiros , Larva , Óvulo , Reprodução
9.
Environ Sci Technol ; 49(10): 6061-9, 2015 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-25875213

RESUMO

Early life stages of fish are particularly vulnerable to oil spills. Simulations of overlap of fish eggs and larvae with oil from different oil-spill scenarios, both without and with the dispersant Corexit 9500, enable quantitative comparisons of dispersants as a mitigation alternative. We have used model simulations of a blow out of 4500 m(3) of crude oil per day (Statfjord light crude) for 30 days at three locations along the Norwegian coast. Eggs were released from nine different known spawning grounds, in the period from March 1st until the end of April, and all spawning products were followed for 90 days from the spill start at April first independent of time for spawning. We have modeled overlap between spawning products and oil concentrations giving a total polycyclic hydrocarbon (TPAH) concentration of more than 1.0 or 0.1 ppb (µg/l). At these orders of magnitude, we expect acute mortality or sublethal effects, respectively. In general, adding dispersants results in higher concentrations of TPAHs in a reduced volume of water compared to not adding dispersants. Also, the TPAHs are displaced deeper in the water column. Model simulations of the spill scenarios showed that addition of chemical dispersant in general moderately decreased the fraction of eggs and larvae that were exposed above the selected threshold values.


Assuntos
Recuperação e Remediação Ambiental/estatística & dados numéricos , Larva/efeitos dos fármacos , Poluição por Petróleo/análise , Petróleo/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Ovos , Monitoramento Ambiental , Recuperação e Remediação Ambiental/métodos , Peixes , Poluentes Químicos da Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA