Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 108
Filtrar
1.
Lung Cancer ; 194: 107860, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-39002492

RESUMO

BACKGROUND: ROS1 fusion is a relatively low prevalence (0.6-2.0%) but targetable driver in lung adenocarcinoma (LUAD). Robust and low-cost tests, such as immunohistochemistry (IHC), are desirable to screen for patients potentially harboring this fusion. The aim was to investigate the prevalence of ROS1 fusions in a clinically annotated European stage I-III LUAD cohort using IHC screening with the in vitro diagnostics (IVD)-marked clone SP384, followed by confirmatory molecular analysis in pre-defined subsets. METHODS: Resected LUADs constructed in tissue microarrays, were immunostained for ROS1 expression using SP384 clone in a ready-to-use kit and Ventana immunostainers. After external quality control, analysis was performed by trained pathologists. Staining intensity of at least 2+ (any percentage of tumor cells) was considered IHC positive (ROS1 IHC + ). Subsequently, ROS1 IHC + cases were 1:1:1 matched with IHC0 and IHC1 + cases and subjected to orthogonal ROS1 FISH and RNA-based testing. RESULTS: The prevalence of positive ROS1 expression (ROS1 IHC + ), defined as IHC 2+/3+, was 4 % (35 of 866 LUADs). Twenty-eight ROS1 IHC + cases were analyzed by FISH/RNA-based testing, with only two harboring a confirmed ROS1 gene fusion, corresponding to a lower limit for the prevalence of ROS1 gene fusion of 0.23 %. They represent a 7 % probability of identifying a fusion among ROS1 IHC + cases. Both confirmed cases were among the only four with sufficient material and H-score ≥ 200, leading to a 50 % probability of identifying a ROS1 gene fusion in cases with an H-score considered strongly positive. All matched ROS1 IHC- (IHC0 and IHC1 + ) cases were also found negative by FISH/RNA-based testing, leading to a 100 % probability of lack of ROS1 fusion for ROS1 IHC- cases. CONCLUSIONS: The prevalence of ROS1 fusion in an LUAD stage I-III European cohort was relatively low. ROS1 IHC using SP384 clone is useful for exclusion of ROS1 gene fusion negative cases.

2.
Anticancer Res ; 44(7): 2981-2988, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38925824

RESUMO

BACKGROUND/AIM: Extracellular vesicle DNA (EV-DNA) has emerged as a novel biomarker for tumor mutation detection using liquid biopsies, exhibiting biological advantages compared to cell-free DNA (cfDNA). This study assessed the feasibility of EV-DNA and cfDNA extraction and sequencing in old serum samples of patients with breast cancer (BC). PATIENTS AND METHODS: A total of 28 serum samples of 27 patients with corresponding clinical information were collected between 1983 and 1991. EV-DNA was extracted using Exo-GAG kit (Nasabiotech) and cfDNA using QIAsymphony DSP Virus/Pathogen Midi Kit (Qiagen), respectively. Subsequently, 10 matched samples (EV-DNA n=5, cfDNA n=5) of five patients were subjected to sequencing using the Oncomine™ Breast cfDNA Research Assay v2 (Thermo Fisher Scientific). RESULTS: Samples were collected on median 1.9 years after primary diagnosis [interquartile range (IQR)=0.2-7.2]. Median follow-up was 9.5 years (IQR=5.2-14.2). Median age of serum samples was 36.1 years (IQR=34.5-37.3). EV-DNA and cfDNA were extracted from 100% (28/28) of the included samples. Both, DNA quantity and concentration were comparable between EV-DNA and cfDNA. Sequencing was successfully performed in 100% (10/10) of the included samples. Two matched analyses yielded equivalent results in EV-DNA and cfDNA (no mutations, n=1; PIK3CA mutation, n=1), whilst in two analyses, PIK3CA mutation was only found in cfDNA, and in one analysis, a TP53 mutation was only found in EV-DNA. CONCLUSION: EV-DNA extraction and sequencing in old serum samples of patients with BC is feasible and has the potential to address clinically relevant questions in longitudinal studies.


Assuntos
Biomarcadores Tumorais , Neoplasias da Mama , Vesículas Extracelulares , Humanos , Neoplasias da Mama/genética , Neoplasias da Mama/sangue , Feminino , Vesículas Extracelulares/genética , Adulto , Biomarcadores Tumorais/sangue , Biomarcadores Tumorais/genética , Mutação , Pessoa de Meia-Idade , Ácidos Nucleicos Livres/sangue , Ácidos Nucleicos Livres/genética , Biópsia Líquida/métodos , Análise de Sequência de DNA/métodos
3.
Oncologist ; 2024 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-38944844

RESUMO

INTRODUCTION: Lung cancer in never-smoker (LCINS) patients accounts for 20% of lung cancer cases, and its biology remains poorly understood, particularly in genetically admixed populations. We elucidated the molecular profile of driver genes in Brazilian LCINS. METHODS: The mutational and gene fusion status of 119 lung adenocarcinomas from self-reported never-smoker patients, was assessed using targeted sequencing (NGS), nCounter, and immunohistochemistry. A panel of 46 ancestry-informative markers determined patients' genetic ancestry. RESULTS: The most frequently mutated gene was EGFR (49.6%), followed by TP53 (39.5%), ALK (12.6%), ERBB2 (7.6%), KRAS (5.9%), PIK3CA (1.7%), and less than 1% alterations in RET, NTRK1, MET∆ex14, PDGFRA, and BRAF. Except for TP53 and PIK3CA, all other alterations were mutually exclusive. Genetic ancestry analysis revealed a predominance of European (71.1%), and a higher African ancestry was associated with TP53 mutations. CONCLUSION: Brazilian LCINS exhibited a similar molecular profile to other populations, except the increased ALK and TP53 alterations. Importantly, 73% of these patients have actionable alterations that are suitable for targeted treatments.

4.
Cell Commun Signal ; 22(1): 324, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38867255

RESUMO

BACKGROUND: KRAS-mutant non-small cell lung cancer (NSCLC) shows a relatively low response rate to chemotherapy, immunotherapy and KRAS-G12C selective inhibitors, leading to short median progression-free survival, and overall survival. The MET receptor tyrosine kinase (c-MET), the cognate receptor of hepatocyte growth factor (HGF), was reported to be overexpressed in KRAS-mutant lung cancer cells leading to tumor-growth in anchorage-independent conditions. METHODS: Cell viability assay and synergy analysis were carried out in native, sotorasib and trametinib-resistant KRAS-mutant NSCLC cell lines. Colony formation assays and Western blot analysis were also performed. RNA isolation from tumors of KRAS-mutant NSCLC patients was performed and KRAS and MET mRNA expression was determined by real-time RT-qPCR. In vivo studies were conducted in NSCLC (NCI-H358) cell-derived tumor xenograft model. RESULTS: Our research has shown promising activity of omeprazole, a V-ATPase-driven proton pump inhibitor with potential anti-cancer properties, in combination with the MET inhibitor tepotinib in KRAS-mutant G12C and non-G12C NSCLC cell lines, as well as in G12C inhibitor (AMG510, sotorasib) and MEK inhibitor (trametinib)-resistant cell lines. Moreover, in a xenograft mouse model, combination of omeprazole plus tepotinib caused tumor growth regression. We observed that the combination of these two drugs downregulates phosphorylation of the glycolytic enzyme enolase 1 (ENO1) and the low-density lipoprotein receptor-related protein (LRP) 5/6 in the H358 KRAS G12C cell line, but not in the H358 sotorasib resistant, indicating that the effect of the combination could be independent of ENO1. In addition, we examined the probability of recurrence-free survival and overall survival in 40 early lung adenocarcinoma patients with KRAS G12C mutation stratified by KRAS and MET mRNA levels. Significant differences were observed in recurrence-free survival according to high levels of KRAS mRNA expression. Hazard ratio (HR) of recurrence-free survival was 7.291 (p = 0.014) for high levels of KRAS mRNA expression and 3.742 (p = 0.052) for high MET mRNA expression. CONCLUSIONS: We posit that the combination of the V-ATPase inhibitor omeprazole plus tepotinib warrants further assessment in KRAS-mutant G12C and non G12C cell lines, including those resistant to the covalent KRAS G12C inhibitors.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Mutação , Omeprazol , Proteínas Proto-Oncogênicas c-met , Proteínas Proto-Oncogênicas p21(ras) , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Proteínas Proto-Oncogênicas p21(ras)/genética , Linhagem Celular Tumoral , Animais , Proteínas Proto-Oncogênicas c-met/genética , Proteínas Proto-Oncogênicas c-met/metabolismo , Proteínas Proto-Oncogênicas c-met/antagonistas & inibidores , Omeprazol/farmacologia , Omeprazol/uso terapêutico , Camundongos , Piridinas/farmacologia , Piridinas/uso terapêutico , Pirimidinas/farmacologia , Pirimidinas/uso terapêutico , Ensaios Antitumorais Modelo de Xenoenxerto , Camundongos Nus , Pirimidinonas/farmacologia , Pirimidinonas/uso terapêutico , Feminino , Triazinas/farmacologia , Triazinas/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Piperazinas , Piperidinas , Piridazinas , Piridonas
5.
Lung Cancer (Auckl) ; 15: 55-67, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38741920

RESUMO

Purpose: High-mobility group box 1 protein (HMGB1) is subject to exportin 1 (XPO1)-dependent nuclear export, and it is involved in functions implicated in resistance to immunotherapy. We investigated whether HMGB1 mRNA expression was associated with response to immune checkpoint inhibitors (ICI) in non-small cell lung cancer (NSCLC). Patients and Methods: RNA was isolated from pretreatment biopsies of patients with advanced NSCLC treated with ICI. Gene expression analysis of several genes, including HMGB1, was conducted using the NanoString Counter analysis system (PanCancer Immune Profiling Panel). Western blotting analysis and cell viability assays in EGFR and KRAS mutant cell lines were carried out. Evaluation of the antitumoral effect of ICI in combination with XPO1 blocker (selinexor) and trametinib was determined in a murine Lewis lung carcinoma model. Results: HMGB1 mRNA levels in NSCLC patients treated with ICI correlated with progression-free survival (PFS) (median PFS 9.0 versus 18.0 months, P=0.008, hazard ratio=0.30 in high versus low HMGB1). After TNF-α stimulation, HMGB1 accumulates in the cytoplasm of PC9 cells, but this accumulation can be prevented by using selinexor or antiretroviral drugs. Erlotinib or osimertinib with selinexor in EGFR-mutant cells and trametinib plus selinexor in KRAS mutant abolish tumor cell proliferation. Selinexor with a PD-1 inhibitor with or without trametinib abrogates the tumor growth in the murine Lewis lung cancer model. Conclusion: An in-depth exploration of the functions of HMGB1 mRNA and protein is expected to uncover new potential targets and provide a basis for treating metastatic NSCLC in combination with ICI.

6.
Transl Oncol ; 40: 101878, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38183801

RESUMO

BACKGROUND: The EGFR pathway is involved in intrinsic and acquired resistance to a wide variety of targeted therapies in cancer. Vaccination represents an alternative to the administration of anti-EGFR monoclonal antibodies, such as cetuximab or panitumumab. Here, we tested if anti-EGF antibodies generated by vaccination (anti-EGF VacAbs) could potentiate the activity of drugs targeting the ERK/MAPK and PI3K/Akt pathways. METHODS: Non-small cell lung cancer (NSCLC), colorectal cancer (CRC) and melanoma cell lines harboring KRAS, NRAS, BRAF and PIK3CA mutations were used. Anti-EGF VacAbs were obtained by immunizing rabbits with a fusion protein containing a synthetic, highly mutated variant of human EGF. Cell viability was determined by MTT, total and phosphorylated proteins by Western blotting, cell cycle distribution and cell death by flow cytometry and emergence of resistance by microscopic examination in low density cultures. RESULTS: Anti-EGF VacAbs potentiated the antiproliferative effects of MEK, KRAS G12C, BRAF, PI3K and Akt inhibitors in KRAS, NRAS, BRAF and PIK3CA mutant cells and delayed the appearance of resistant clones in vitro. The effects of anti-EGF VacAbs were comparable or superior to those of panitumumab and cetuximab. The combination of anti-EGF VacAbs with the targeted inhibitors effectively suppressed EGFR downstream pathways and sera from patients immunized with an anti-EGF vaccine also blocked activation of EGFR effectors. CONCLUSIONS: Anti-EGF VacAbs enhance the antiproliferative effects of drugs targeting the ERK/MAPK and PIK3CA/Akt pathways. Our data provide a rationale for clinical trials testing anti-EGF vaccination combined with inhibitors selected according to the patient's genetic profile.

8.
Crit Rev Oncol Hematol ; 195: 104228, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38072173

RESUMO

KRAS G12C mutations in non-small cell lung cancer (NSCLC) partially respond to KRAS G12C covalent inhibitors. However, early adaptive resistance occurs due to rewiring of signaling pathways, activating receptor tyrosine kinases, primarily EGFR, but also MET and ligands. Evidence indicates that treatment with KRAS G12C inhibitors (sotorasib) triggers the MRAS:SHOC2:PP1C trimeric complex. Activation of MRAS occurs from alterations in the Scribble and Hippo-dependent pathways, leading to YAP activation. Other mechanisms that involve STAT3 signaling are intertwined with the activation of MRAS. The high-resolution MRAS:SHOC2:PP1C crystallization structure allows in silico analysis for drug development. Activation of MRAS:SHOC2:PP1C is primarily Scribble-driven and downregulated by HUWE1. The reactivation of the MRAS complex is carried out by valosin containing protein (VCP). Exploring these pathways as therapeutic targets and their impact on different chemotherapeutic agents (carboplatin, paclitaxel) is crucial. Comutations in STK11/LKB1 often co-occur with KRAS G12C, jeopardizing the effect of immune checkpoint (anti-PD1/PDL1) inhibitors.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Proteínas Proto-Oncogênicas p21(ras)/genética , Paclitaxel , Carboplatina , Mutação , Peptídeos e Proteínas de Sinalização Intracelular , Proteínas Supressoras de Tumor/genética , Ubiquitina-Proteína Ligases
9.
Sci Rep ; 13(1): 21168, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-38036758

RESUMO

NTRK1, 2, and 3 fusions are important therapeutic targets for NSCLC patients, but their prevalence in South American admixed populations needs to be better explored. NTRK fusion detection in small biopsies is a challenge, and distinct methodologies are used, such as RNA-based next-generation sequencing (NGS), immunohistochemistry, and RNA-based nCounter. This study aimed to evaluate the frequency and concordance of positive samples for NTRK fusions using a custom nCounter assay in a real-world scenario of a single institution in Brazil. Out of 147 NSCLC patients, 12 (8.2%) cases depicted pan-NTRK positivity by IHC. Due to the absence of biological material, RNA-based NGS and/or nCounter could be performed in six of the 12 IHC-positive cases (50%). We found one case exhibiting an NTRK1 fusion and another an NTRK3 gene fusion by both RNA-based NGS and nCounter techniques. Both NTRK fusions were detected in patients diagnosed with lung adenocarcinoma, with no history of tobacco consumption. Moreover, no concomitant EGFR, KRAS, and ALK gene alterations were detected in NTRK-positive patients. The concordance rate between IHC and RNA-based NGS was 33.4%, and between immunohistochemistry and nCounter was 40%. Our findings indicate that NTRK fusions in Brazilian NSCLC patients are relatively rare (1.3%), and RNA-based nCounter methodology is a suitable approach for NRTK fusion identification in small biopsies.


Assuntos
Adenocarcinoma de Pulmão , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/diagnóstico , Carcinoma Pulmonar de Células não Pequenas/genética , Receptor trkA/genética , RNA , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/genética , Proteínas de Fusão Oncogênica/genética
10.
iScience ; 26(7): 107006, 2023 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-37534190

RESUMO

This study evaluates the efficacy of combining targeted therapies with MET or SHP2 inhibitors to overcome MET-mediated resistance in different NSCLC subtypes. A prevalence study was conducted for MET amplification and overexpression in samples from patients with NSCLC who relapsed on ALK, ROS1, or RET tyrosine kinase inhibitors. MET-mediated resistance was detected in 37.5% of tissue biopsies, which allow the detection of MET overexpression, compared to 7.4% of liquid biopsies. The development of drug resistance by MET overexpression was confirmed in EGFRex19del-, KRASG12C-, HER2ex20ins-, and TPM3-NTRK1-mutant cell lines. The combination of targeted therapy with MET or SHP2 inhibitors was found to overcome MET-mediated resistance in both in vitro and in vivo assays. This study highlights the importance of considering MET overexpression as a resistance driver to NSCLC targeted therapies to better identify patients who could potentially benefit from combination approaches with MET or SHP2 inhibitors.

11.
Mol Cancer ; 22(1): 110, 2023 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-37443114

RESUMO

BACKGROUND: Drugs targeting the spindle assembly checkpoint (SAC), such as inhibitors of Aurora kinase B (AURKB) and dual specific protein kinase TTK, are in different stages of clinical development. However, cell response to SAC abrogation is poorly understood and there are no markers for patient selection. METHODS: A panel of 53 tumor cell lines of different origins was used. The effects of drugs were analyzed by MTT and flow cytometry. Copy number status was determined by FISH and Q-PCR; mRNA expression by nCounter and RT-Q-PCR and protein expression by Western blotting. CRISPR-Cas9 technology was used for gene knock-out (KO) and a doxycycline-inducible pTRIPZ vector for ectopic expression. Finally, in vivo experiments were performed by implanting cultured cells or fragments of tumors into immunodeficient mice. RESULTS: Tumor cells and patient-derived xenografts (PDXs) sensitive to AURKB and TTK inhibitors consistently showed high expression levels of BH3-interacting domain death agonist (BID), while cell lines and PDXs with low BID were uniformly resistant. Gene silencing rendered BID-overexpressing cells insensitive to SAC abrogation while ectopic BID expression in BID-low cells significantly increased sensitivity. SAC abrogation induced activation of CASP-2, leading to cleavage of CASP-3 and extensive cell death only in presence of high levels of BID. Finally, a prevalence study revealed high BID mRNA in 6% of human solid tumors. CONCLUSIONS: The fate of tumor cells after SAC abrogation is driven by an AURKB/ CASP-2 signaling mechanism, regulated by BID levels. Our results pave the way to clinically explore SAC-targeting drugs in tumors with high BID expression.


Assuntos
Neoplasias , Proteínas Serina-Treonina Quinases , Humanos , Animais , Camundongos , Proteínas Serina-Treonina Quinases/genética , Aurora Quinase B/genética , Aurora Quinase B/metabolismo , Pontos de Checagem da Fase M do Ciclo Celular , Linhagem Celular Tumoral , RNA Mensageiro , Neoplasias/tratamento farmacológico , Neoplasias/genética , Proteínas Tirosina Quinases/metabolismo , Proteínas de Ciclo Celular/genética
12.
Mol Oncol ; 17(9): 1884-1897, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37243883

RESUMO

ALK, ROS1, and RET fusions and MET∆ex14 variant associate with response to targeted therapies in non-small-cell lung cancer (NSCLC). Technologies for fusion testing in tissue must be adapted to liquid biopsies, which are often the only material available. In this study, circulating-free RNA (cfRNA) and extracellular vesicle RNA (EV-RNA) were purified from liquid biopsies. Fusion and MET∆ex14 transcripts were analyzed by nCounter (Nanostring) and digital PCR (dPCR) using the QuantStudio® System (Applied Biosystems). We found that nCounter detected ALK, ROS1, RET, or MET∆ex14 aberrant transcripts in 28/40 cfRNA samples from positive patients and 0/16 of control individuals (70% sensitivity). Regarding dPCR, aberrant transcripts were detected in the cfRNA of 25/40 positive patients. Concordance between the two techniques was 58%. Inferior results were obtained when analyzing EV-RNA, where nCounter often failed due to a low amount of input RNA. Finally, results of dPCR testing in serial liquid biopsies of five patients correlated with response to targeted therapy. We conclude that nCounter can be used for multiplex detection of fusion and MET∆ex14 transcripts in liquid biopsies, showing a performance comparable with next-generation sequencing platforms. dPCR could be employed for disease follow-up in patients with a known alteration. cfRNA should be preferred over EV-RNA for these analyses.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Ácidos Nucleicos Livres , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/diagnóstico , Proteínas Tirosina Quinases/genética , Neoplasias Pulmonares/patologia , Quinase do Linfoma Anaplásico/genética , RNA/genética , Proteínas Proto-Oncogênicas c-ret/genética , Proteínas Proto-Oncogênicas/genética , Biópsia Líquida , Proteínas de Fusão Oncogênica/genética
14.
Pathobiology ; 90(5): 344-355, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37031678

RESUMO

INTRODUCTION: TP53 is the most frequently mutated gene in lung tumors, but its prognostic role in admixed populations, such as Brazilians, remains unclear. In this study, we aimed to evaluate the frequency and clinicopathological impact of TP53 mutations in non-small cell lung cancer (NSCLC) patients in Brazil. METHODS: We analyzed 446 NSCLC patients from Barretos Cancer Hospital. TP53 mutational status was evaluated through targeted next-generation sequencing (NGS) and the variants were biologically classified as disruptive/nondisruptive and as truncating/nontruncating. We also assessed genetic ancestry using 46 ancestry-informative markers. Analysis of lung adenocarcinomas from the cBioportal dataset was performed. We further examined associations of TP53 mutations with patients' clinicopathological features. RESULTS: TP53 mutations were detected in 64.3% (n = 287/446) of NSCLC cases, with a prevalence of 60.4% (n = 221/366) in lung adenocarcinomas. TP53 mutations were associated with brain metastasis at diagnosis, tobacco consumption, and higher African ancestry. Disruptive and truncating mutations were associated with a younger age at diagnosis. Additionally, cBioportal dataset revealed that TP53 mutations were associated with younger age and Black skin color. Patients harboring disruptive/truncating TP53 mutations had worse overall survival than nondisruptive/nontruncating and wild-type patients. CONCLUSION: TP53 mutations are common in Brazilian lung adenocarcinomas, and their biological characterization as disruptive and truncating mutations is associated with African ancestry and shorter overall survival.


Assuntos
Adenocarcinoma de Pulmão , População Negra , Neoplasias Pulmonares , Proteína Supressora de Tumor p53 , Humanos , Adenocarcinoma de Pulmão/etnologia , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/mortalidade , Adenocarcinoma de Pulmão/patologia , População Negra/genética , Brasil/epidemiologia , Carcinoma Pulmonar de Células não Pequenas/etnologia , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/mortalidade , Carcinoma Pulmonar de Células não Pequenas/patologia , Neoplasias Pulmonares/etnologia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/mortalidade , Neoplasias Pulmonares/patologia , Mutação , Prevalência , Prognóstico , Proteína Supressora de Tumor p53/genética
16.
Int J Mol Sci ; 24(5)2023 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-36902312

RESUMO

Despite the diversity of liquid biopsy transcriptomic repertoire, numerous studies often exploit only a single RNA type signature for diagnostic biomarker potential. This frequently results in insufficient sensitivity and specificity necessary to reach diagnostic utility. Combinatorial biomarker approaches may offer a more reliable diagnosis. Here, we investigated the synergistic contributions of circRNA and mRNA signatures derived from blood platelets as biomarkers for lung cancer detection. We developed a comprehensive bioinformatics pipeline permitting an analysis of platelet-circRNA and mRNA derived from non-cancer individuals and lung cancer patients. An optimal selected signature is then used to generate the predictive classification model using machine learning algorithm. Using an individual signature of 21 circRNA and 28 mRNA, the predictive models reached an area under the curve (AUC) of 0.88 and 0.81, respectively. Importantly, combinatorial analysis including both types of RNAs resulted in an 8-target signature (6 mRNA and 2 circRNA), enhancing the differentiation of lung cancer from controls (AUC of 0.92). Additionally, we identified five biomarkers potentially specific for early-stage detection of lung cancer. Our proof-of-concept study presents the first multi-analyte-based approach for the analysis of platelets-derived biomarkers, providing a potential combinatorial diagnostic signature for lung cancer detection.


Assuntos
Neoplasias Pulmonares , RNA Circular , Humanos , RNA Circular/genética , RNA Mensageiro/genética , Plaquetas/patologia , Biomarcadores , Neoplasias Pulmonares/genética , Biomarcadores Tumorais/genética
17.
J Clin Pathol ; 76(1): 47-52, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34429353

RESUMO

AIMS: Gene fusions assays are key for personalised treatments of advanced human cancers. Their implementation on cytological material requires a preliminary validation that may make use of cell line slides mimicking cytological samples. In this international multi-institutional study, gene fusion reference standards were developed and validated. METHODS: Cell lines harbouring EML4(13)-ALK(20) and SLC34A2(4)-ROS1(32) gene fusions were adopted to prepare reference standards. Eight laboratories (five adopting amplicon-based and three hybridisation-based platforms) received, at different dilution points two sets of slides (slide A 50.0%, slide B 25.0%, slide C 12.5% and slide D wild type) stained by Papanicolaou (Pap) and May Grunwald Giemsa (MGG). Analysis was carried out on a total of 64 slides. RESULTS: Four (50.0%) out of eight laboratories reported results on all slides and dilution points. While 12 (37.5%) out of 32 MGG slides were inadequate, 27 (84.4%) out of 32 Pap slides produced libraries adequate for variant calling. The laboratories using hybridisation-based platforms showed the highest rate of inadequate results (13/24 slides, 54.2%). Conversely, only 10.0% (4/40 slides) of inadequate results were reported by laboratories adopting amplicon-based platforms. CONCLUSIONS: Reference standards in cytological format yield better results when Pap staining and processed by amplicon-based assays. Further investigation is required to optimise these standards for MGG stained cells and for hybridisation-based approaches.


Assuntos
Neoplasias , Proteínas de Fusão Oncogênica , Humanos , Padrões de Referência , Coloração e Rotulagem
18.
JTO Clin Res Rep ; 4(12): 100604, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38162176

RESUMO

Introduction: As recently evidenced by the ADAURA trial, most patients with stages IB to IIIA of resected EGFR-mutant lung adenocarcinoma benefit from osimertinib as adjuvant therapy. Nevertheless, predictive markers of response and recurrence are still an unmet need for more than 10% of these patients. Some circular RNAs (circRNAs) have been reported to play a role in tumor growth and proliferation. In this project, we studied circRNA expression levels in formalin-fixed, paraffin-embedded lung tumor samples to explore their biomarker potential and develop a machine learning (ML)-based signature that could predict the benefit of adjuvant EGFR tyrosine kinase inhibitors in patients with EGFR-mutant NSCLC. Methods: Patients with surgically resected EGFR mutant-positive, stages I to IIIB NSCLC were recruited from February 2007 to December 2015. Formalin-fixed, paraffin-embedded tumor samples were retrospectively collected from those patients with a follow-up period of more than or equal to 36 months (N = 76). Clinicopathologic features were annotated. Total RNA was purified and quantified prior nCounter processing with our circRNA custom panel. Data analysis and ML were performed taking into consideration circRNA expression levels and recurrence-free survival (RFS). RFS was defined from the day of surgery to the day when recurrence was detected radiologically or the death owing to any cause. Results: Of the 76 patients with EGFR mutation-positive NSCLC included in the study, 34 relapsed within 3 years after resection. The median age of the relapsing cohort was 71.5 (range: 49-89) years. Most patients were nonsmokers (n = 21; 61.8%) and of female sex (n = 21; 61.8%). Most cases (n = 17; 50%) presented an exon 21 mutation, whereas 15 and four patients had an exon 19 and exon 18 mutation, respectively. Differential expression analysis revealed that circRUNX1, along with circFUT8 and circAASDH, was up-regulated in relapsing patients (p < 0.05 and >2 fold-change). A ML-based circRNA signature predictive of recurrence in patients with EGFR mutation-positive NSCLC, comprising circRUNX1, was developed. Our final model including selected 6-circRNA signature with random forest algorithm was able to classify relapsing patients with an accuracy of 83% and an area under the receiver operating characteristic curve of 0.91.RFS was significantly shorter not only for the subgroup of patients with high versus low circRUNX1 expression but also for the group classified as recurrent by the ML circRNA signature when compared with those classified as nonrecurrent. Conclusions: Our findings suggest that circRUNX1 and the presented ML-developed signature could be novel tools to predict the benefit of adjuvant EGFR tyrosine kinase inhibitors with regard to RFS in patients with EGFR-mutant NSCLC. The training and validation phases of our ML signature will be conducted including bigger independent cohorts.

19.
Pharmaceutics ; 14(10)2022 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-36297470

RESUMO

BACKGROUND: The analysis of liquid biopsies brings new opportunities in the precision oncology field. Under this context, extracellular vesicle circular RNAs (EV-circRNAs) have gained interest as biomarkers for lung cancer (LC) detection. However, standardized and robust protocols need to be developed to boost their potential in the clinical setting. Although nCounter has been used for the analysis of other liquid biopsy substrates and biomarkers, it has never been employed for EV-circRNA analysis of LC patients. METHODS: EVs were isolated from early-stage LC patients (n = 36) and controls (n = 30). Different volumes of plasma, together with different number of pre-amplification cycles, were tested to reach the best nCounter outcome. Differential expression analysis of circRNAs was performed, along with the testing of different machine learning (ML) methods for the development of a prognostic signature for LC. RESULTS: A combination of 500 µL of plasma input with 10 cycles of pre-amplification was selected for the rest of the study. Eight circRNAs were found upregulated in LC. Further ML analysis selected a 10-circRNA signature able to discriminate LC from controls with AUC ROC of 0.86. CONCLUSIONS: This study validates the use of the nCounter platform for multiplexed EV-circRNA expression studies in LC patient samples, allowing the development of prognostic signatures.

20.
Biomark Res ; 10(1): 57, 2022 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-35933395

RESUMO

BACKGROUND: Intercellular communication is mediated by extracellular vesicles (EVs), as they enclose selectively packaged biomolecules that can be horizontally transferred from donor to recipient cells. Because all cells constantly generate and recycle EVs, they provide accurate timed snapshots of individual pathophysiological status. Since blood plasma circulates through the whole body, it is often the biofluid of choice for biomarker detection in EVs. Blood collection is easy and minimally invasive, yet reproducible procedures to obtain pure EV samples from circulating biofluids are still lacking. Here, we addressed central aspects of EV immunoaffinity isolation from simple and complex matrices, such as plasma. METHODS: Cell-generated EV spike-in models were isolated and purified by size-exclusion chromatography, stained with cellular dyes and characterized by nano flow cytometry. Fluorescently-labelled spike-in EVs emerged as reliable, high-throughput and easily measurable readouts, which were employed to optimize our EV immunoprecipitation strategy and evaluate its performance. Plasma-derived EVs were captured and detected using this straightforward protocol, sequentially combining isolation and staining of specific surface markers, such as CD9 or CD41. Multiplexed digital transcript detection data was generated using the Nanostring nCounter platform and evaluated through a dedicated bioinformatics pipeline. RESULTS: Beads with covalently-conjugated antibodies on their surface outperformed streptavidin-conjugated beads, coated with biotinylated antibodies, in EV immunoprecipitation. Fluorescent EV spike recovery evidenced that target EV subpopulations can be efficiently retrieved from plasma, and that their enrichment is dependent not only on complex matrix composition, but also on the EV surface phenotype. Finally, mRNA profiling experiments proved that distinct EV subpopulations can be captured by directly targeting different surface markers. Furthermore, EVs isolated with anti-CD61 beads enclosed mRNA expression patterns that might be associated to early-stage lung cancer, in contrast with EVs captured through CD9, CD63 or CD81. The differential clinical value carried within each distinct EV subset highlights the advantages of selective isolation. CONCLUSIONS: This EV isolation protocol facilitated the extraction of clinically useful information from plasma. Compatible with common downstream analytics, it is a readily implementable research tool, tailored to provide a truly translational solution in routine clinical workflows, fostering the inclusion of EVs in novel liquid biopsy settings.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA