Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Bioprocess Biosyst Eng ; 47(9): 1585-1593, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38922411

RESUMO

Surface enhanced Raman spectroscopy (SERS) by using gold nanoparticles (AuNPs) has gained relevance for the identification of biomolecules and some cancer cells. Searching for greener NPs synthesis alternatives, we evaluated the SERS properties of AuNPs produced by using different filamentous fungi. The AuNPs were synthesized utilizing the supernatant of Botrytis cinerea, Trichoderma atroviride, Trichoderma asperellum, Alternaria sp. and Ganoderma sessile. The AuNPs were characterized by ultraviolet-visible spectroscopy (UV-Vis) to identify its characteristic surface plasmon resonance, which was located at 545 nm (B. cinerea), 550 nm (T. atroviride), 540 nm (T. asperellum), 530 nm (Alternaria sp.), and 525 nm (G. sessile). Morphology, size and crystal structure were characterized through transmission electron microscopy (TEM); colloidal stability was assessed by Z-potential measurements. We found that, under specific incubation conditions, it was possible to obtain AuNPs with spherical and quasi-spherical shapes, which mean size range depends on the fungal species supernatant with 92.9 nm (B. cinerea), 24.7 nm (T. atroviride), 16.4 nm (T. asperellum), 9.5 nm (Alternaria sp.), and 13.6 nm (G. sessile). This, as it can be expected, has an effect on Raman amplification. A micro-Raman spectroscopy system operated at a wavelength of 532 nm was used for the evaluation of the SERS features of the AuNPs. We chose methylene blue as our target molecule since it has been widely used for such a purpose in the literature. Our results show that AuNPs synthesized with the supernatant of T. atroviride, T. asperellum and Alternaria sp. produce the stronger SERS effect, with enhancement factor (EF) of 20.9, 28.8 and 35.46, respectively. These results are promising and could serve as the base line for the development of biosensors through a facile, simple, and low-cost green alternative.


Assuntos
Ouro , Nanopartículas Metálicas , Análise Espectral Raman , Ouro/química , Nanopartículas Metálicas/química , Análise Espectral Raman/métodos , Fungos/metabolismo , Espectrofotometria Ultravioleta
2.
Environ Pollut ; 343: 123195, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38142811

RESUMO

Organophosphorus pesticides (OPPs) such as parathion have extensive uses in agriculture and household applications. Chronic exposure to these pesticides can cause severe health and environmental issues. Therefore, a current ecological concern is associated with accumulating these noxious OPPs in food and water sources. In this work, a new Tb3+-doped Zn-LMOF (Zn-LMOF= (3D) {[Zn3(1,4 benzenedicarboxylate)3(EtOH)2]·(EtOH)0.6}∞) was synthesized by a solvent-free reaction between the Zn-LMOF and the salt TbCl3·6H2O using a high-speed ball milling. The Tb@Zn-LMOF was thoroughly characterized by multiple spectroscopic tools, including Scanning Electron Microscopy with Energy-Dispersive X-ray Spectroscopy, and studied in-depth as a luminescent sensor for a series of pesticides (parathion, malathion, methalaxil, carbofuran, iprodione, captan and glyphosate) in aqueous methanol. The Tb@Zn-LMOF is a long-lived green-emitting compound with luminescence originated by an efficient antenna effect from the excited energy levels of Zn-LMOF toward the 5D state of Tb3+ ions, as it is displayed by its strong emission bands at 488, 545, 585, and 620 nm and a lifetime of 1.01 ms upon excitation at 290 nm. Additions of pesticides to a neutral methanolic dispersion of Tb@Zn-LMOF modified its green emission intensity with a pronounced selectivity toward parathion within the micromolar concentration range. The detection limit for parathion was calculated to be 3.04 ± 0.2 µM for Tb@Zn-LMOF. Based on 31P NMR and mass spectrometry studies, it is attributed to the release of lanthanide ions from Tb@Zn-LMOF with the simultaneous formation of a Tb3+-parathion complex.


Assuntos
Estruturas Metalorgânicas , Paration , Praguicidas , Estruturas Metalorgânicas/química , Luminescência , Praguicidas/análise , Compostos Organofosforados , Íons/análise , Zinco
3.
Antibiotics (Basel) ; 12(8)2023 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-37627671

RESUMO

Copper oxide nanoparticles (CuONPs) were synthesized using an eco-friendly method and their antimicrobial and biocompatibility properties were determined. The supernatant and extract of the fungus Ganoderma sessile yielded small, quasi-spherical NPs with an average size of 4.5 ± 1.9 nm and 5.2 ± 2.1 nm, respectively. Nanoparticles were characterized by UV-Vis spectroscopy, transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), dynamic light scattering (DLS), and zeta potential analysis. CuONPs showed antimicrobial activity against Staphylococcus aureus (S. aureus), Escherichia coli (E. coli), and Pseudomonas aeruginosa (P. aeruginosa). The half-maximal inhibitory concentration (IC50) for E. coli was 8.5 µg/mL, for P. aeruginosa was 4.1 µg/mL, and for S. aureus was 10.2 µg/mL. The ultrastructural analysis of bacteria exposed to CuONPs revealed the presence of small CuONPs all through the bacterial cells. Finally, the toxicity of CuONPs was analyzed in three mammalian cell lines: hepatocytes (AML-12), macrophages (RAW 264.7), and kidney (MDCK). Low concentrations (<15 µg/mL) of CuONPs-E were non-toxic to kidney cells and macrophages, and the hepatocytes were the most susceptible to CuONPs-S. The results obtained suggest that the CuONPs synthesized using the extract of the fungus G. sessile could be further evaluated for the treatment of superficial infectious diseases.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA