Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Agric Food Chem ; 72(8): 4448-4463, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38364257

RESUMO

The presence of biogenic amines (histamine, tyramine, putrescine, and cadaverine) in seafood is a significant concern for food safety. This review describes for the first time a shotgun quantitative proteomics strategy to evaluate and compare foodborne strains of bacteria that produce biogenic amines in seafoods. This approach recognized 35,621 peptide spectrum matches, belonging to 20,792 peptides, and 4621 proteins. It allowed the determination of functional pathways and the classification of the strains into hierarchical clusters. The study identified a protein-protein interaction network involving 1160 nodes/10,318 edges. Proteins were related to energy pathways, spermidine biosynthesis, and putrescine metabolism. Label-free quantitative proteomics allowed the identification of differentially regulated proteins in specific strains such as putrescine aminotransferase, arginine decarboxylase, and l-histidine-binding protein. Additionally, 123 peptides were characterized as virulence factors and 299 peptide biomarkers were selected to identify bacterial species in fish products. This study presents the most extensive proteomic repository and progress in the science of food biogenic bacteria and could be applied in the food industry for the detection of bacterial contamination that produces histamine and other biogenic amines during food processing/storage.


Assuntos
Histamina , Putrescina , Animais , Proteômica , Fatores de Virulência , Aminas Biogênicas/metabolismo , Bactérias/metabolismo , Produtos Pesqueiros , Peptídeos , Alimentos Marinhos/microbiologia
2.
Int J Mol Sci ; 24(9)2023 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-37175409

RESUMO

Biogenic amine-producing bacteria are responsible for the production of basic nitrogenous compounds (histamine, cadaverine, tyramine, and putrescine) following the spoilage of food due to microorganisms. In this study, we adopted a shotgun proteomics strategy to characterize 15 foodborne strains of biogenic-amine-producing bacteria. A total of 10,673 peptide spectrum matches belonging to 4081 peptides and corresponding to 1811 proteins were identified. Relevant functional pathways were determined, and strains were differentiated into hierarchical clusters. An expected protein-protein interaction network was created (260 nodes/1973 interactions). Most of the determined proteins were associated with networks/pathways of energy, putrescine metabolism, and host-virus interaction. Additionally, 556 peptides were identified as virulence factors. Moreover, 77 species-specific peptide biomarkers corresponding to 64 different proteins were proposed to identify 10 bacterial species. This represents a major proteomic dataset of biogenic-amine-producing strains. These results may also be suitable for new treatments for food intoxication and for tracking microbial sources in foodstuffs.


Assuntos
Proteômica , Putrescina , Putrescina/metabolismo , Aminas Biogênicas/metabolismo , Bactérias/metabolismo , Peptídeos/metabolismo , Alimentos Marinhos , Microbiologia de Alimentos
3.
Int J Mol Sci ; 23(22)2022 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-36430811

RESUMO

The microbiota present in the gastrointestinal tract is involved in the development or prevention of food allergies and autoimmune disorders; these bacteria can enter the gallbladder and, depending on the species involved, can either be benign or cause significant diseases. Occlusion of the gallbladder, usually due to the presence of calculi blocking the bile duct, facilitates microbial infection and inflammation, which can be serious enough to require life-saving surgery. In addition, the biliary salts are secreted into the intestine and can affect the gut microbiota. The interaction between the gut microbiota, pathogenic organisms, and the human immune system can create intestinal dysbiosis, generating a variety of syndromes including the development of food allergies and autoimmune disorders. The intestinal microbiota can aggravate certain food allergies, which become severe when the integrity of the intestinal barrier is affected, allowing bacteria, or their metabolites, to cross the intestinal barrier and invade the bloodstream, affecting distal body organs. This article deals with health conditions and severe diseases that are either influenced by the gut flora or caused by gallbladder obstruction and inflammation, as well as putative treatments for those illnesses.


Assuntos
Doenças Autoimunes , Hipersensibilidade Alimentar , Microbioma Gastrointestinal , Humanos , Vesícula Biliar , Intestinos/microbiologia , Inflamação
4.
Nutrients ; 14(20)2022 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-36297084

RESUMO

Bioactive peptides are found in foods and dietary supplements and are responsible for health benefits with applications in human and animal medicine. The health benefits include antihypertensive, antimicrobial, antithrombotic, immunomodulatory, opioid, antioxidant, anti-allergic and anti-inflammatory functions. Bioactive peptides can be obtained by microbial action, mainly by the gastrointestinal microbiota from proteins present in food, originating from either vegetable or animal matter or by the action of different gastrointestinal proteases. Proteomics can play an important role in the identification of bioactive peptides. High-resolution mass spectrometry is the principal technique used to detect and identify different types of analytes present in complex mixtures, even when available at low concentrations. Moreover, proteomics may provide the characterization of epitopes to develop new food allergy vaccines and the use of immunomodulating peptides to induce oral tolerance toward offending food allergens or even to prevent allergic sensitization. In addition, food-derived bioactive peptides have been investigated for their anti-inflammatory properties to provide safer alternatives to nonsteroidal anti-inflammatory drugs (NSAIDs). All these bioactive peptides can be a potential source of novel drugs and ingredients in food and pharmaceuticals. The following review is focused on food-derived bioactive peptides with antiallergic and anti-inflammatory properties and summarizes the new insights into the use of proteomics for their identification and quantification.


Assuntos
Antialérgicos , Anti-Infecciosos , Peptídeos , Analgésicos Opioides , Antialérgicos/farmacologia , Anti-Infecciosos/farmacologia , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios não Esteroides/farmacologia , Anti-Hipertensivos , Antioxidantes/farmacologia , Misturas Complexas , Suplementos Nutricionais , Epitopos , Fibrinolíticos , Hipersensibilidade Alimentar/prevenção & controle , Peptídeo Hidrolases , Peptídeos/farmacologia , Peptídeos/química , Proteômica
5.
Antibiotics (Basel) ; 11(3)2022 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-35326794

RESUMO

Radiation therapy has been used for more than a century, either alone or in combination with other therapeutic modalities, to treat most types of cancer. On average, radiation therapy is included in the treatment plans for over 50% of all cancer patients, and it is estimated to contribute to about 40% of curative protocols, a success rate that may reach 90%, or higher, for certain tumor types, particularly on patients diagnosed at early disease stages. A growing body of research provides solid support for the existence of bidirectional interaction between radiation exposure and the human microbiota. Radiation treatment causes quantitative and qualitative changes in the gut microbiota composition, often leading to an increased abundance of potentially hazardous or pathogenic microbes and a concomitant decrease in commensal bacteria. In turn, the resulting dysbiotic microbiota becomes an important contributor to worsen the adverse events caused in patients by the inflammatory process triggered by the radiation treatment and a significant determinant of the radiation therapy anti-tumor effectiveness. Antibiotics, which are frequently included as prophylactic agents in cancer treatment protocols to prevent patient infections, may affect the radiation/microbiota interaction through mechanisms involving both their antimicrobial activity, as a mediator of microbiota imbalances, and their dual capacity to act as pro- or anti-tumorigenic effectors and, consequently, as critical determinants of radiation therapy outcomes. In this scenario, it becomes important to introduce the use of probiotics and/or other agents that may stabilize the healthy microbiota before patients are exposed to radiation. Ultimately, newly developed methodologies may facilitate performing personalized microbiota screenings on patients before radiation therapy as an accurate way to identify which antibiotics may be used, if needed, and to inform the overall treatment planning. This review examines currently available data on these issues from the perspective of improving radiation therapy outcomes.

6.
Int J Mol Sci ; 22(15)2021 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-34360905

RESUMO

Some Listeria species are important human and animal pathogens that can be found in contaminated food and produce a variety of virulence factors involved in their pathogenicity. Listeria strains exhibiting multidrug resistance are known to be progressively increasing and that is why continuous monitoring is needed. Effective therapy against pathogenic Listeria requires identification of the bacterial strain involved, as well as determining its virulence factors, such as antibiotic resistance and sensitivity. The present study describes the use of liquid chromatography-electrospray ionization tandem mass spectrometry (LC-ESI-MS/MS) to do a global shotgun proteomics characterization for pathogenic Listeria species. This method allowed the identification of a total of 2990 non-redundant peptides, representing 2727 proteins. Furthermore, 395 of the peptides correspond to proteins that play a direct role in Listeria pathogenicity; they were identified as virulence factors, toxins and anti-toxins, or associated with either antibiotics (involved in antibiotic-related compounds production or resistance) or resistance to toxic substances. The proteomic repository obtained here can be the base for further research into pathogenic Listeria species and facilitate the development of novel therapeutics for these pathogens.


Assuntos
Antibacterianos/farmacologia , Proteínas de Bactérias/química , Farmacorresistência Bacteriana Múltipla , Listeria/efeitos dos fármacos , Listeria/patogenicidade , Proteoma/química , Fatores de Virulência/química , Transportadores de Cassetes de Ligação de ATP/química , Cromatografia Líquida/métodos , Genes Bacterianos , Listeria/classificação , Listeria/genética , Peptídeos/química , Proteômica/métodos , Espectrometria de Massas por Ionização por Electrospray/métodos , Espectrometria de Massas em Tandem/métodos
7.
J Biotechnol ; 268: 28-39, 2018 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-29339117

RESUMO

Galium verum, also known as Lady's Bedstraw or Cheese Rennet, is an herbaceous perennial plant traditionally used in cheese-making. We used RACE PCR to isolate novel enzymes from Galium verum with the ability to clot milk. This approach generated two cDNA sequences (named preprogaline A and B) encoding proteins displaying the typical plant aspartic protease primary structure. Preprogaline B was expressed in the yeast Pichia pastoris, after deleting and replacing its original signal peptide with the yeast α-factor signal peptide from Saccharomyces cerevisiae. The secreted recombinant protein was obtained by growing P. pastoris in YPD medium and had the ability to clot milk. The mature form of progaline B is a heterodimeric glycosylated enzyme, with a molecular weight of approximately 48 kDa, that contains a heavy (30.7 kDa) and a light (13.5 kDa) polypeptide chains linked by disulfide bonds. Western blot analysis revealed that progaline B is activated by the acidification of the yeast culture medium and that enzymatic activation requires two steps. First the precursor protein is cleaved into two polypeptide chains by partial removal of the plant-specific insert (PSI) present in plant aspartic proteases; this is later followed by propeptide removal. By altering the pH of the P. pastoris culture medium, we were able to obtain either active or inactive forms of the enzyme. Recombinant progaline B displayed a κ-casein hydrolysis pattern analogous to those produced by the animal and microbial coagulants currently used in the dairy industry, but it exhibited a different digestion profile on α- and ß-caseins. The plant protease progaline B displays milk-clotting activities suitable for the production of novel dairy products.


Assuntos
Ácido Aspártico Endopeptidases/metabolismo , Galium/enzimologia , Leite/metabolismo , Pichia/metabolismo , Sequência de Aminoácidos , Animais , Ácido Aspártico Endopeptidases/química , Caseínas/metabolismo , Bovinos , Clonagem Molecular , DNA Complementar/genética , Ativação Enzimática/efeitos dos fármacos , Concentração de Íons de Hidrogênio , Hidrólise , Peptídeos/química , Proteólise/efeitos dos fármacos , Proteínas Recombinantes/química , Proteínas Recombinantes/farmacologia , Análise de Sequência de DNA , Temperatura
8.
Int Microbiol ; 14(2): 61-71, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22069150

RESUMO

This review focuses on the role of proteins in the production and maintenance of foam in both sparkling wines and beer. The quality of the foam in beer but especially in sparkling wines depends, among other factors, on the presence of mannoproteins released from the yeast cell walls during autolysis. These proteins are hydrophobic, highly glycosylated, and their molecular masses range from 10 to 200 kDa--characteristics that allow mannoproteins to surround and thus stabilize the gas bubbles of the foam. Both the production and stabilization of foam also depend on other proteins. In wine, these include grape-derived proteins such as vacuolar invertase; in beer, barley-derived proteins, such as LTP1, protein Z, and hordein-derived polypeptides, are even more important in this respect than mannoproteins.


Assuntos
Cerveja/análise , Cerveja/microbiologia , Glicoproteínas de Membrana/análise , Vinho/análise , Vinho/microbiologia , Leveduras/química , Proteínas Fúngicas/análise , Proteínas Fúngicas/química , Interações Hidrofóbicas e Hidrofílicas , Glicoproteínas de Membrana/química , Peso Molecular , Proteínas de Plantas/análise , Proteínas de Plantas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA