Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Heart Lung Transplant ; 42(9): 1166-1174, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37088343

RESUMO

BACKGROUND: Isolation of Pseudomonas aeruginosa (PsA) is associated with increased BAL (bronchoalveolar lavage) inflammation and lung allograft injury in lung transplant recipients (LTR). However, the effect of PsA on macrophage responses in this population is incompletely understood. We examined human alveolar macrophage (AMΦ) responses to PsA and Pseudomonas dominant microbiome in healthy LTR. METHODS: We stimulated THP-1 derived macrophages (THP-1MΦ) and human AMΦ from LTR with different bacteria and LTR BAL derived microbiome characterized as Pseudomonas-dominant. Macrophage responses were assessed by high dimensional flow cytometry, including their intracellular production of cytokines (TNF-α, IL-6, IL-8, IL-1ß, IL-10, IL-1RA, and TGF-ß). Pharmacological inhibitors were utilized to evaluate the role of the inflammasome in PsA-macrophage interaction. RESULTS: We observed upregulation of pro-inflammatory cytokines (TNF-α, IL-6, IL-8, IL-1ß) following stimulation by PsA compared to other bacteria (Staphylococcus aureus (S.Aur), Prevotella melaninogenica, Streptococcus pneumoniae) in both THP-1MΦ and LTR AMΦ, predominated by IL-1ß. IL-1ß production from THP-1MΦ was sustained after PsA stimulation for up to 96 hours and 48 hours in LTR AMΦ. Treatment with the inflammasome inhibitor BAY11-7082 abrogated THP-1MΦ IL-1ß production after PsA exposure. BAL Pseudomonas-dominant microbiota elicited an increased IL-1ß, similar to PsA, an effect abrogated by the addition of antibiotics. CONCLUSION: PsA and PsA-dominant lung microbiota induce sustained IL-1ß production in LTR AMΦ. Pharmacological targeting of the inflammasome reduces PsA-macrophage-IL-1ß responses, underscoring their use in lung transplant recipients.


Assuntos
Artrite Psoriásica , Macrófagos Alveolares , Humanos , Macrófagos Alveolares/metabolismo , Fator de Necrose Tumoral alfa , Interleucina-6 , Interleucina-8/metabolismo , Regulação para Cima , Pseudomonas/metabolismo , Inflamassomos , Transplantados , Pulmão/metabolismo , Citocinas/metabolismo
2.
J Neurol Sci ; 442: 120425, 2022 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-36191573

RESUMO

BACKGROUND AND OBJECTIVES: Identifying the etiologic diagnosis in patients presenting with myelopathy is essential in order to guide appropriate treatment and follow-up. We set out to examine the etiologic diagnosis after comprehensive clinical evaluation and diagnostic work-up in a large cohort of patients referred to our specialized myelopathy clinic, and to explore the demographic profiles and symptomatic evolution of specific etiologic diagnoses. METHODS: In this retrospective study of patients referred to the Johns Hopkins Myelitis and Myelopathy Center between 2006 and 2021 for evaluation of "transverse myelitis", the final etiologic diagnosis determined after comprehensive evaluation in each patient was reviewed and validated. Demographic characteristics and temporal profile of symptom evolution were recorded. RESULTS: Of 1193 included patients, 772 (65%) were determined to have an inflammatory myelopathy and 421 (35%) were determined to have a non-inflammatory myelopathy. Multiple sclerosis/clinically isolated syndrome (n = 221, 29%) and idiopathic myelitis (n = 149, 19%) were the most frequent inflammatory diagnoses, while spinal cord infarction (n = 197, 47%) and structural causes of myelopathy (n = 108, 26%) were the most frequent non-inflammatory diagnoses. Compared to patients with inflammatory myelopathies, patients with non-inflammatory myelopathies were more likely to be older, male and experience chronic symptom evolution (p < 0.001 for all). Hyperacute symptom evolution was most frequent in patients with spinal cord infarction (74%), while chronic symptom evolution was most frequent in patients with structural causes of myelopathy (81%), arteriovenous fistula or arteriovenous malformation (81%), myelopathy associated with rheumatologic disorder (71%), and sarcoidosis-associated myelopathy (61%). CONCLUSIONS: Patients initially diagnosed with "transverse myelitis" are eventually found to have a more specific inflammatory or even non-inflammatory cause, potentially resulting in inappropriate treatment and follow-up. Demographic characteristics and temporal profile of symptom evolution may help inform a differential diagnosis in these patients. Etiological diagnosis of myelopathies would provide better therapeutic decisions.


Assuntos
Mielite Transversa , Mielite , Doenças da Medula Espinal , Humanos , Masculino , Estudos Retrospectivos , Medula Espinal/diagnóstico por imagem , Mielite Transversa/etiologia , Mielite Transversa/complicações , Doenças da Medula Espinal/diagnóstico , Doenças da Medula Espinal/etiologia , Mielite/etiologia , Mielite/complicações , Diagnóstico Diferencial , Infarto/complicações , Imageamento por Ressonância Magnética
3.
Commun Biol ; 5(1): 242, 2022 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-35304580

RESUMO

Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), the cause of coronavirus disease 2019 (COVID-19), has incited a global health crisis. Currently, there are limited therapeutic options for the prevention and treatment of SARS-CoV-2 infections. We evaluated the antiviral activity of sulforaphane (SFN), the principal biologically active phytochemical derived from glucoraphanin, the naturally occurring precursor present in high concentrations in cruciferous vegetables. SFN inhibited in vitro replication of six strains of SARS-CoV-2, including Delta and Omicron, as well as that of the seasonal coronavirus HCoV-OC43. Further, SFN and remdesivir interacted synergistically to inhibit coronavirus infection in vitro. Prophylactic administration of SFN to K18-hACE2 mice prior to intranasal SARS-CoV-2 infection significantly decreased the viral load in the lungs and upper respiratory tract and reduced lung injury and pulmonary pathology compared to untreated infected mice. SFN treatment diminished immune cell activation in the lungs, including significantly lower recruitment of myeloid cells and a reduction in T cell activation and cytokine production. Our results suggest that SFN should be explored as a potential agent for the prevention or treatment of coronavirus infections.


Assuntos
Antivirais/uso terapêutico , Resfriado Comum/tratamento farmacológico , Infecções por Coronavirus/tratamento farmacológico , Coronavirus Humano OC43 , Isotiocianatos/uso terapêutico , SARS-CoV-2 , Sulfóxidos/uso terapêutico , Monofosfato de Adenosina/análogos & derivados , Monofosfato de Adenosina/uso terapêutico , Alanina/análogos & derivados , Alanina/uso terapêutico , Animais , Células CACO-2 , Chlorocebus aethiops , Resfriado Comum/virologia , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/virologia , Citocinas/imunologia , Sinergismo Farmacológico , Humanos , Pulmão/imunologia , Pulmão/virologia , Macrófagos Alveolares/imunologia , Masculino , Camundongos Transgênicos , Baço/imunologia , Linfócitos T/imunologia , Células Vero , Carga Viral , Tratamento Farmacológico da COVID-19
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA