Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
J Pathol ; 260(3): 261-275, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37017456

RESUMO

S-nitrosoglutathione reductase (GSNOR) is a denitrosylase enzyme that has been suggested to play a tumor suppressor role, although the mechanisms responsible are still largely unclear. In this study, we show that GSNOR deficiency in tumors is associated with poor prognostic histopathological features and poor survival in patients with colorectal cancer (CRC). GSNOR-low tumors were characterized by an immunosuppressive microenvironment with exclusion of cytotoxic CD8+ T cells. Notably, GSNOR-low tumors exhibited an immune evasive proteomic signature along with an altered energy metabolism characterized by impaired oxidative phosphorylation (OXPHOS) and energetic dependence on glycolytic activity. CRISPR-Cas9-mediated generation of GSNOR gene knockout (KO) CRC cells confirmed in vitro and in vivo that GSNOR-deficiency conferred higher tumorigenic and tumor-initiating capacities. Moreover, GSNOR-KO cells possessed enhanced immune evasive properties and resistance to immunotherapy, as revealed following xenografting them into humanized mouse models. Importantly, GSNOR-KO cells were characterized by a metabolic shift from OXPHOS to glycolysis to produce energy, as indicated by increased lactate secretion, higher sensitivity to 2-deoxyglucose (2DG), and a fragmented mitochondrial network. Real-time metabolic analysis revealed that GSNOR-KO cells operated close to their maximal glycolytic rate, as a compensation for lower OXPHOS levels, explaining their higher sensitivity to 2DG. Remarkably, this higher susceptibility to glycolysis inhibition with 2DG was validated in patient-derived xenografts and organoids from clinical GSNOR-low tumors. In conclusion, our data support the idea that metabolic reprogramming induced by GSNOR deficiency is an important mechanism for tumor progression and immune evasion in CRC and that the metabolic vulnerabilities associated with the deficiency of this denitrosylase can be exploited therapeutically. © 2023 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.


Assuntos
Neoplasias , Oxirredutases , Camundongos , Animais , Humanos , Linfócitos T CD8-Positivos , Evasão da Resposta Imune , Proteômica , Microambiente Tumoral
2.
Arthritis Rheumatol ; 75(10): 1749-1761, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37094367

RESUMO

OBJECTIVE: We analyzed NAD+ metabolism in patients with rheumatoid arthritis (RA), its association with disease activity and clinical outcomes of RA, and the therapeutic potential of pharmacologic NAD+ boosting. METHODS: Our study included 253 participants. In the first cohort, comprising 153 RA patients and 56 healthy donors, we assessed NAD+ levels and NAD+ -related gene pathways. We analyzed 92 inflammatory molecules by proximity extension assay. In the second cohort, comprising 44 RA patients starting anti-tumor necrosis factor (anti-TNF) drugs, we evaluated changes in NAD+ levels and their association with clinical response after 3 months. Mechanistic studies were performed ex vivo on peripheral blood mononuclear cells (PBMCs) from patients with RA to test the beneficial effects of NAD+ boosters, such as nicotinamide and nicotinamide riboside. RESULTS: Reduced NAD+ levels were found in RA samples, in line with altered activity and expression of genes involved in NAD+ consumption (sirtuins, poly[ADP-ribose] polymerase, CD38), transport (connexin 43), and biosynthesis (NAMPT, NMNATs). Unsupervised clustering analysis identified a group of RA patients with the highest inflammatory profile, the lowest NAD+ levels, and the highest disease activity (as shown by the Disease Activity Score in 28 joints). NAD+ levels were modulated by anti-TNF therapy in parallel with the clinical response. In vitro studies using PBMCs from RA patients showed that nicotinamide riboside and nicotinamide increased NAD+ levels via NAMPT and NMNAT and reduced their prooxidative, proapoptotic, and proinflammatory status. CONCLUSION: RA patients display altered NAD+ metabolism, directly linked to their inflammatory and disease activity status, which was reverted by anti-TNF therapy. The preclinical beneficial effects of NAD+ boosters, as shown in leukocytes from RA patients, along with their proven clinical safety, might pave the way for the development of clinical trials using these compounds.


Assuntos
Artrite Reumatoide , NAD , Humanos , NAD/metabolismo , Leucócitos Mononucleares/metabolismo , Inibidores do Fator de Necrose Tumoral , Niacinamida/uso terapêutico , Niacinamida/metabolismo , Artrite Reumatoide/tratamento farmacológico , Artrite Reumatoide/metabolismo , Poli(ADP-Ribose) Polimerases/metabolismo
3.
Aging (Albany NY) ; 13(10): 13380-13392, 2021 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-34035185

RESUMO

Cellular senescence is a cell fate response characterized by a permanent cell cycle arrest driven primarily the by cell cycle inhibitor and tumor suppressor proteins p16Ink4a and p21Cip1/Waf1. In mice, the p21Cip1/Waf1 encoding locus, Cdkn1a, is known to generate two transcripts that produce identical proteins, but one of these transcript variants is poorly characterized. We show that the Cdkn1a transcript variant 2, but not the better-studied variant 1, is selectively elevated during natural aging across multiple mouse tissues. Importantly, mouse cells induced to senescence in culture by genotoxic stress (ionizing radiation or doxorubicin) upregulated both transcripts, but with different temporal dynamics: variant 1 responded nearly immediately to genotoxic stress, whereas variant 2 increased much more slowly as cells acquired senescent characteristics. Upon treating mice systemically with doxorubicin, which induces widespread cellular senescence in vivo, variant 2 increased to a larger extent than variant 1. Variant 2 levels were also more sensitive to the senolytic drug ABT-263 in naturally aged mice. Thus, variant 2 is a novel and more sensitive marker than variant 1 or total p21Cip1/Waf1 protein for assessing the senescent cell burden and clearance in mice.


Assuntos
Envelhecimento/genética , Envelhecimento/patologia , Senescência Celular/genética , Inibidor de Quinase Dependente de Ciclina p21/genética , Compostos de Anilina/farmacologia , Animais , Biomarcadores/metabolismo , Senescência Celular/efeitos dos fármacos , Ritmo Circadiano/efeitos dos fármacos , Ritmo Circadiano/genética , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Doxorrubicina/farmacologia , Feminino , Masculino , Camundongos Endogâmicos C57BL , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Estabilidade Proteica/efeitos dos fármacos , Sulfonamidas/farmacologia , Proteína Supressora de Tumor p53/metabolismo , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/genética
4.
J Biomed Sci ; 27(1): 54, 2020 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-32303225

RESUMO

BACKGROUND: Radiographic axial spondyloarthritis (r-axSpA) is a chronic inflammatory form of arthritis in which tumor necrosis factor (TNF)-α, a potent inducer of inflammatory response and a key regulator of innate immunity and of Th1 immune responses, plays a central role. NETosis is a mechanism of innate immune defense that is involved in diverse rheumatology diseases. Nevertheless, spontaneous NETosis generation in r-axSpA, its association to disease pathogenesis, and the NETosis involvement on anti-TNF-α therapy's effects has never been explored. METHODS: Thirty r-axSpA patients and 32 healthy donors (HDs) were evaluated. Neutrophil extracellular trap (NET) formation, mediators of signal-transduction cascade required for NETosis induction and cell-free NETosis-derived products were quantified. An additional cohort of 15 r-axSpA patients treated with infliximab (IFX) for six months were further analyzed. In vitro studies were designed to assess the effects of IFX in NETosis generation and the inflammatory profile triggered. RESULTS: Compared to HDs, neutrophils from r-axSpA patients displayed augmented spontaneous NET formation, elevated expression of NET-associated signaling components, nuclear peptidylarginine deiminase 4 translocation and increased citrullinated histone H3. Furthermore, patients exhibited altered circulating levels of cell-free NETosis-derived products (DNA, nucleosomes and elastase). Additional studies revealed that cell-free NETosis-derived products could be suitable biomarkers for distinguish r-axSpA patients from HDs. Correlation studies showed association between cell-free NETosis-derived products and clinical inflammatory parameters. Besides, nucleosomes displayed potential as a biomarker for discriminate patients according to disease activity. IFX therapy promoted a reduction in both NETosis generation and disease activity in r-axSpA patients. Mechanistic in vitro studies further unveiled the relevance of IFX in reducing NET release and normalizing the augmented inflammatory activities promoted by NETs in mononuclear cells. CONCLUSIONS: This study reveals that NETosis is enhanced in r-axSpA patients and identifies the NETosis-derived products as potential disease activity biomarkers. In addition, the data suggests the potential role of NET generation analysis for assessment of therapeutic effectiveness in r-axSpA.


Assuntos
Anti-Inflamatórios não Esteroides/uso terapêutico , Armadilhas Extracelulares/fisiologia , Infliximab/uso terapêutico , Espondilartrite/tratamento farmacológico , Fator de Necrose Tumoral alfa/antagonistas & inibidores , Adulto , Biomarcadores , Estudos Transversais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Espanha , Espondilartrite/etiologia
5.
Aging Cell ; 17(4): e12767, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29706024

RESUMO

Calorie restriction (CR) is one of the most robust means to improve health and survival in model organisms. CR imposes a metabolic program that leads to increased stress resistance and delayed onset of chronic diseases, including cancer. In rodents, CR induces the upregulation of two NADH-dehydrogenases, namely NAD(P)H:quinone oxidoreductase 1 (Nqo1) and cytochrome b5 reductase 3 (Cyb5r3), which provide electrons for energy metabolism. It has been proposed that this upregulation may be responsible for some of the beneficial effects of CR, and defects in their activity are linked to aging and several age-associated diseases. However, it is unclear whether changes in metabolic homeostasis solely through upregulation of these NADH-dehydrogenases have a positive impact on health and survival. We generated a mouse that overexpresses both metabolic enzymes leading to phenotypes that resemble aspects of CR including a modest increase in lifespan, greater physical performance, a decrease in chronic inflammation, and, importantly, protection against carcinogenesis, one of the main hallmarks of CR. Furthermore, these animals showed an enhancement of metabolic flexibility and a significant upregulation of the NAD+ /sirtuin pathway. The results highlight the importance of these NAD+ producers for the promotion of health and extended lifespan.


Assuntos
Restrição Calórica , Citocromo-B(5) Redutase/genética , Regulação Enzimológica da Expressão Gênica , NAD(P)H Desidrogenase (Quinona)/genética , Animais , Citocromo-B(5) Redutase/metabolismo , Metabolismo Energético , Longevidade , Masculino , Camundongos , Camundongos Transgênicos , NAD(P)H Desidrogenase (Quinona)/metabolismo , Ratos
6.
Free Radic Biol Med ; 95: 82-95, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27016073

RESUMO

Nuclear factor E2-related factor-2 (Nrf2) is a cap'n'collar/basic leucine zipper (b-ZIP) transcription factor which acts as sensor of oxidative and electrophilic stress. Low levels of Nrf2 predispose cells to chemical carcinogenesis but a dark side of Nrf2 function also exists because its unrestrained activation may allow the survival of potentially dangerous damaged cells. Since Nrf2 inhibition may be of therapeutic interest in cancer, and a decrease of Nrf2 activity may be related with degenerative changes associated with aging, it is important to investigate how the lack of Nrf2 function activates molecular mechanisms mediating cell death. Murine Embryonic Fibroblasts (MEFs) bearing a Nrf2 deletion (Nrf2KO) displayed diminished cellular growth rate and shortened lifespan compared with wild-type MEFs. Basal rates of DNA fragmentation and histone H2A.X phosphorylation were higher in Nrf2KO MEFs, although steady-state levels of reactive oxygen species were not significantly increased. Enhanced rates of apoptotic DNA fragmentation were confirmed in liver and lung tissues from Nrf2KO mice. Apoptosis in Nrf2KO MEFs was associated with a decrease of Bcl-2 but not Bax levels, and with the release of the mitochondrial pro-apoptotic factors cytochrome c and AIF. Procaspase-9 and Apaf-1 were also increased in Nrf2KO MEFs but caspase-3 was not activated. Inhibition of XIAP increased death in Nrf2KO but not in wild-type MEFs. Mitochondrial ultrastructure was also altered in Nrf2KO MEFs. Our results support that Nrf2 deletion produces mitochondrial dysfunction associated with mitochondrial permeabilization, increasing basal apoptosis through a caspase-independent and AIF-dependent pathway.


Assuntos
Carcinogênese/genética , Mitocôndrias/genética , Fator 2 Relacionado a NF-E2/genética , Estresse Oxidativo/genética , Espécies Reativas de Oxigênio/metabolismo , Animais , Apoptose/genética , Carcinogênese/patologia , Caspase 1/genética , Proliferação de Células/genética , Fibroblastos/metabolismo , Fibroblastos/patologia , Histonas , Fígado/metabolismo , Fígado/patologia , Pulmão/metabolismo , Pulmão/patologia , Camundongos , Camundongos Knockout , Mitocôndrias/ultraestrutura , Fator 2 Relacionado a NF-E2/metabolismo , Permeabilidade , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteína X Associada a bcl-2/genética
7.
NPJ Aging Mech Dis ; 2: 16006, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28721264

RESUMO

Cytochrome b5 reductases (CYB5R) are required for the elongation and desaturation of fatty acids, cholesterol synthesis and mono-oxygenation of cytochrome P450 enzymes, all of which are associated with protection against metabolic disorders. However, the physiological role of CYB5R in the context of metabolism, healthspan and aging remains ill-defined. We generated CYB5R-overexpressing flies (CYB5R-OE) and created a transgenic mouse line overexpressing CYB5R3 (CYB5R3-Tg) in the C57BL/6J background to investigate the function of this class of enzymes as regulators of metabolism and age-associated pathologies. Gender- and/or stage-specific induction of CYB5R, and pharmacological activation of CYB5R with tetrahydroindenoindole extended fly lifespan. Increased expression of CYB5R3 was associated with significant improvements in several metabolic parameters that resulted in modest lifespan extension in mice. Diethylnitrosamine-induced liver carcinogenesis was reduced in CYB5R3-Tg mice. Accumulation of high levels of long-chain polyunsaturated fatty acids, improvement in mitochondrial function, decrease in oxidative damage and inhibition of chronic pro-inflammatory pathways occurred in the transgenic animals. These results indicate that CYB5R represents a new target in the study of genes that regulate lipid metabolism and healthspan.

8.
J Gerontol A Biol Sci Med Sci ; 70(4): 399-409, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24691092

RESUMO

Imbalance between proliferation and cell death accounts for several age-linked diseases. Aging, calorie restriction (CR), and fat source are all factors that may influence apoptotic signaling in liver, an organ that plays a central metabolic role in the organism. Here, we have studied the combined effect of these factors on a number of apoptosis regulators and effectors. For this purpose, animals were fed diets containing different fat sources (lard, soybean oil, or fish oil) under CR for 6 or 18 months. An age-linked increase in the mitochondrial apoptotic pathway was detected with CR, including a decrease in Bcl-2/Bax ratio, an enhanced release of cytochrome c to the cytosol and higher caspase-9 activity. However, these changes were not fully transmitted to the effectors apoptosis-inducing factor and caspase-3. CR (which abated aging-related inflammatory responses) and dietary fat altered the activities of caspases-8, -9, and -3. Apoptotic index (DNA fragmentation) and mean nuclear area were increased in aged animals with the exception of calorie-restricted mice fed a lard-based fat source. These results suggest possible protective changes in hepatic homeostasis with aging in the calorie-restricted lard group.


Assuntos
Envelhecimento/metabolismo , Apoptose , Restrição Calórica , Gorduras na Dieta/metabolismo , Fígado/metabolismo , Animais , Apoptose/efeitos dos fármacos , Caspase 3/metabolismo , Caspase 8/metabolismo , Caspase 9/metabolismo , Citocromos c/metabolismo , Citosol/efeitos dos fármacos , Genes bcl-2/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Proteína X Associada a bcl-2/metabolismo
9.
Proteomics ; 6 Suppl 1: S293-9, 2006 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-16521150

RESUMO

The main goal of this study was to analyze, using proteomic techniques, changes in protein expression of acute myeloid leukemia (AML) cells that could give insights into a better early prognosis for tumor pathophysiology. Proteomic analysis of different subtypes of AML cells was carried out using 2-DE and MALDI-TOF PMF analysis. Proteins identified as more significantly altered between the different AMLs belonged to the group of suppressor genes, metabolic enzymes, antioxidants, structural proteins and signal transduction mediators. Among them, seven identified proteins were found significantly altered in almost all the AML blast cells analyzed in relation to normal mononuclear blood cells: alpha-enolase, RhoGDI2, annexin A10, catalase, peroxiredoxin 2, tromomyosin 3, and lipocortin 1 (annexin 1). These differentially expressed proteins are known to play important roles in cellular functions such as glycolysis, tumor suppression, apoptosis, angiogenesis and metastasis, and they might contribute to the adverse evolution of the disease. Proteomic analysis has identified for the first time novel proteins that may either help to form a differential prognosis or be used as markers for disease outcome, thus providing potential new targets for rational pathogenesis-based therapies of AML.


Assuntos
Biomarcadores Tumorais/metabolismo , Leucemia Mieloide Aguda/metabolismo , Proteômica , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Estudos de Casos e Controles , Pré-Escolar , Eletroforese em Gel Bidimensional , Feminino , Humanos , Leucemia Mieloide Aguda/tratamento farmacológico , Masculino , Pessoa de Meia-Idade , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA