Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biomolecules ; 13(12)2023 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-38136610

RESUMO

Signaling by calcium ion (Ca2+) plays a prominent role in cell physiology, and these mechanisms are frequently altered in tumor cells. In this review, we consider the interplay of Ca2+ signaling and the functions of the proto-oncogene non-receptor tyrosine kinase c-Src in tumor cells, and the viral oncogenic variant v-Src in transformed cells. Also, other members of the Src-family kinases are considered in this context. The role of Ca2+ in the cell is frequently mediated by Ca2+-binding proteins, where the Ca2+-sensor protein calmodulin (CaM) plays a prominent, essential role in many cellular signaling pathways. Thus, we cover the available information on the role and direct interaction of CaM with c-Src and v-Src in cancerous cells, the phosphorylation of CaM by v-Src/c-Src, and the actions of different CaM-regulated Ser/Thr-protein kinases and the CaM-dependent phosphatase calcineurin on v-Src/c-Src. Finally, we mention some clinical implications of these systems to identify mechanisms that could be targeted for the therapeutic treatment of human cancers.


Assuntos
Transdução de Sinais , Quinases da Família src , Humanos , Fosforilação , Quinases da Família src/metabolismo , Calmodulina/metabolismo , Oncogenes
2.
Biomedicines ; 11(3)2023 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-36979639

RESUMO

Overexpression and mutations of the epidermal growth factor receptor (EGFR/ErbB1/HER1) and other tyrosine kinase receptors of the ErbB family (ErbB2/HER2, ErbB3/HER3 and ErbB4/HER4) play an essential role in enhancing the proliferation, the migratory capacity and invasiveness of many tumor cells, leading to cancer progression and increased malignancy. To understand these cellular processes in detail is essential to understand at a molecular level the signaling pathways and regulatory mechanisms controlling these receptors. In this regard, calmodulin (CaM) is a Ca2+-sensor protein that directly interacts with and regulates ErbB receptors, as well as some CaM-dependent kinases that also regulate these receptors, particularly EGFR and ErbB2, adding an additional layer of CaM-dependent regulation to this system. In this short review, an update of recent advances in this area is presented, covering the direct action of Ca2+/CaM on the four ErbB family members mostly in tumor cells and the indirect action of Ca2+/CaM on the receptors via CaM-regulated kinases. It is expected that further understanding of the CaM-dependent mechanisms regulating the ErbB receptors in future studies could identify new therapeutic targets in these systems that could help to control or delay cancer progression.

3.
J Cell Physiol ; 236(7): 4997-5011, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33305427

RESUMO

The epidermal growth factor receptor (EGFR) harbors a calmodulin (CaM)-binding domain (CaM-BD) and a CaM-like domain (CaM-LD) upstream and downstream, respectively, of the tyrosine kinase (TK) domain. We demonstrate in this paper that deletion of the positively charged CaM-BD (EGFR/CaM-BD∆) inactivated the TK activity of the receptor. Moreover, deletion of the negatively charged CaM-LD (EGFR/CaM-LD∆), leaving a single negative residue (glutamate), reduced the activity of the receptor. In contrast, substituting the CaM-LD with a histidine/valine-rich peptide (EGFR/InvCaM-LD) caused full inactivation. We also demonstrated using confocal microscopy and flow cytometry that the chimera EGFR-green fluorescent protein (GFP)/CaM-BD∆, the EGFR/CaM-LD∆, and EGFR/InvCaM-LD mutants all bind tetramethylrhodamine-labelled EGF. These EGFR mutants were localized at the plasma membrane as the wild-type receptor does. However, only the EGFR/CaM-LD∆ and EGFR/InvCaM-LD mutants appear to undergo ligand-dependent internalization, while the EGFR-GFP/CaM-BD∆ mutant seems to be deficient in this regard. The obtained results and in silico modelling studies of the asymmetric structure of the EGFR kinase dimer support a role of a CaM-BD/CaM-LD electrostatic interaction in the allosteric activation of the EGFR TK.


Assuntos
Calmodulina/metabolismo , Membrana Celular/metabolismo , Animais , Células CHO , Sinalização do Cálcio/fisiologia , Linhagem Celular , Cricetulus , Ativação Enzimática/fisiologia , Fator de Crescimento Epidérmico/metabolismo , Receptores ErbB/genética , Receptores ErbB/metabolismo , Humanos , Ligação Proteica/fisiologia , Domínios Proteicos/fisiologia , Proteínas Tirosina Quinases/metabolismo
4.
Arch Biochem Biophys ; 687: 108386, 2020 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-32360748

RESUMO

Growth factor receptor bound protein 7 (Grb7) is a mammalian adaptor protein participating in signaling pathways implicated in cell migration, metastatic invasion, cell proliferation and tumor-associated angiogenesis. We expressed tagged versions of wild type Grb7 and the mutant Grb7Δ, lacking its calmodulin-binding domain (CaM-BD), in human embryonic kidney (HEK) 293 cells and rat glioma C6 cells to identify novel binding partners using shot-gun proteomics. Among the new identified proteins, we validated the ubiquitin-ligase Nedd4 (neural precursor cell expressed developmentally down-regulated protein 4), the heat-shock protein Hsc70/HSPA8 (heat shock cognate protein 70) and the cell cycle regulatory protein caprin-1 (cytoplasmic activation/proliferation-associated protein 1) in rat glioma C6 cells. Our results suggest a role of Grb7 in pathways where these proteins are implicated. These include protein trafficking and degradation, stress-response, chaperone-mediated autophagy, apoptosis and cell proliferation.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Proteína Adaptadora GRB7/metabolismo , Proteínas de Choque Térmico HSC70/metabolismo , Ubiquitina-Proteína Ligases Nedd4/metabolismo , Animais , Proteínas de Ligação a Calmodulina/genética , Proteínas de Ligação a Calmodulina/metabolismo , Linhagem Celular Tumoral , Proteína Adaptadora GRB7/genética , Células HEK293 , Humanos , Mutação , Ligação Proteica , Domínios Proteicos/genética , Estrutura Secundária de Proteína , Proteômica , Ratos
5.
Heliyon ; 6(5): e03922, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32420488

RESUMO

The growth factor receptor bound protein 7 (Grb7) is a Ca2+-dependent calmodulin (CaM)-binding adaptor protein implicated, among other functions, in cell proliferation, migration and tumor-associated angiogenesis. The goal of this study was to determine whether a peptide based on the CaM binding site of Grb7 disrupts cellular processes, relevant for the malignancy of tumor cells, in which this adaptor protein is implicated. We designed synthetic myristoylated and non-myristoylated peptides corresponding to the CaM-binding domain of human Grb7 with the sequence 243RKLWKRFFCFLRRS256 and a variant peptide with the mutated sequence RKLERFFCFLRRE (W246E-ΔK247-S256E). The two non-myristoylated peptides bind dansyl-CaM with higher efficiency in the presence than in the absence of Ca2+ and they enter into the cell, as tested with 5(6)-carboxytetramethylrhodamine (TAMRA)-labeled peptides. The myristoylated and non-myristoylated peptides inhibit the proliferation, migration and invasiveness of A431 tumor cells while they enhance their adhesion to the substrate. The myristoylated peptides have stronger inhibitory effect than the non-myristoylated counterparts, in agreement with their expected higher cell-permeant capacity. The myristoylated and non-myristoylated W246E-ΔK247-S256E mutant peptide has a lesser inhibitory effect on cell proliferation as compared to the wild-type peptide. We also demonstrated that the myristoylated peptides were more efficient than the CaM antagonist N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide (W-7) inhibiting cell migration and equally efficient inhibiting cell proliferation.

6.
Cell Calcium ; 88: 102207, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32408024

RESUMO

Calmodulin (CaM) is the principle mediator of the Ca2+ signal in all eukaryotic cells. A huge variety of basic cellular processes including cell cycle control, proliferation, secretion and motility, among many others are governed by CaM, which regulates activities of myriads of target proteins. Mammalian CaM is encoded by three genes localized on different chromosomes all producing an identical protein. In this study, we have generated HeLa human cancer cells conditionally expressing CaM in a genetic background with all three genes inactivated by CRISPR/Cas9. We demonstrate that downregulation of ectopically expressed CaM is achieved after 120 h, when cells are arrested in the M phase of the cell cycle. We show for the first time that CaM downregulation in human cancer cells is followed by a multinucleated senescent state as indicated by expression of ß-galactosidase as well as cell morphology typical for senescent cells. Our newly generated genetic system may be useful for the analysis of other CaM regulated processes in eukaryotic cells in the absence of endogenous CaM genes.


Assuntos
Calmodulina/metabolismo , Ciclo Celular/genética , Células/metabolismo , Calmodulina/deficiência , Ciclo Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Senescência Celular/efeitos dos fármacos , Regulação para Baixo/efeitos dos fármacos , Doxiciclina/farmacologia , Células HeLa , Humanos , Mitose/efeitos dos fármacos , Fosforilação/efeitos dos fármacos
7.
Int J Mol Sci ; 21(3)2020 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-31991573

RESUMO

Calmodulin (CaM) is the principal Ca2+ sensor protein in all eukaryotic cells, that upon binding to target proteins transduces signals encoded by global or subcellular-specific changes of Ca2+ concentration within the cell. The Ca2+/CaM complex as well as Ca2+-free CaM modulate the activity of a vast number of enzymes, channels, signaling, adaptor and structural proteins, and hence the functionality of implicated signaling pathways, which control multiple cellular functions. A basic and important cellular function controlled by CaM in various ways is cell motility. Here we discuss the role of CaM-dependent systems involved in cell migration, tumor cell invasiveness, and metastasis development. Emphasis is given to phosphorylation/dephosphorylation events catalyzed by myosin light-chain kinase, CaM-dependent kinase-II, as well as other CaM-dependent kinases, and the CaM-dependent phosphatase calcineurin. In addition, the role of the CaM-regulated small GTPases Rac1 and Cdc42 (cell division cycle protein 42) as well as CaM-binding adaptor/scaffold proteins such as Grb7 (growth factor receptor bound protein 7), IQGAP (IQ motif containing GTPase activating protein) and AKAP12 (A kinase anchoring protein 12) will be reviewed. CaM-regulated mechanisms in cancer cells responsible for their greater migratory capacity compared to non-malignant cells, invasion of adjacent normal tissues and their systemic dissemination will be discussed, including closely linked processes such as the epithelial-mesenchymal transition and the activation of metalloproteases. This review covers as well the role of CaM in establishing metastatic foci in distant organs. Finally, the use of CaM antagonists and other blocking techniques to downregulate CaM-dependent systems aimed at preventing cancer cell invasiveness and metastasis development will be outlined.


Assuntos
Sinalização do Cálcio , Calmodulina/metabolismo , Movimento Celular , Proteínas de Neoplasias/metabolismo , Neoplasias/metabolismo , Animais , Humanos , Invasividade Neoplásica , Metástase Neoplásica , Neoplasias/patologia
8.
Cell Mol Life Sci ; 76(12): 2299-2328, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30877334

RESUMO

The appearance of modular proteins is a widespread phenomenon during the evolution of proteins. The combinatorial arrangement of different functional and/or structural domains within a single polypeptide chain yields a wide variety of activities and regulatory properties to the modular proteins. In this review, we will discuss proteins, that in addition to their catalytic, transport, structure, localization or adaptor functions, also have segments resembling the helix-loop-helix EF-hand motifs found in Ca2+-binding proteins, such as calmodulin (CaM). These segments are denoted CaM-like domains (CaM-LDs) and play a regulatory role, making these CaM-like proteins sensitive to Ca2+ transients within the cell, and hence are able to transduce the Ca2+ signal leading to specific cellular responses. Importantly, this arrangement allows to this group of proteins direct regulation independent of other Ca2+-sensitive sensor/transducer proteins, such as CaM. In addition, this review also covers CaM-binding proteins, in which their CaM-binding site (CBS), in the absence of CaM, is proposed to interact with other segments of the same protein denoted CaM-like binding site (CLBS). CLBS are important regulatory motifs, acting either by keeping these CaM-binding proteins inactive in the absence of CaM, enhancing the stability of protein complexes and/or facilitating their dimerization via CBS/CLBS interaction. The existence of proteins containing CaM-LDs or CLBSs substantially adds to the enormous versatility and complexity of Ca2+/CaM signaling.


Assuntos
Calmodulina/química , Motivos EF Hand , Proteínas/química , Actinina/química , Actinina/metabolismo , Sequência de Aminoácidos , Animais , Sítios de Ligação , Calcineurina/química , Calcineurina/metabolismo , Cálcio/metabolismo , Sinalização do Cálcio , Calmodulina/metabolismo , Calpaína/química , Calpaína/metabolismo , Humanos , Modelos Moleculares , Ligação Proteica , Domínios Proteicos , Proteínas Quinases/química , Proteínas Quinases/metabolismo , Proteínas/metabolismo
9.
Biochem J ; 475(24): 4011-4023, 2018 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-30578290

RESUMO

Calmodulin (CaM) is a versatile Ca2+-sensor/transducer protein that modulates hundreds of enzymes, channels, transport systems, transcription factors, adaptors and other structural proteins, controlling in this manner multiple cellular functions. In addition to its capacity to regulate target proteins in a Ca2+-dependent and Ca2+-independent manner, the posttranslational phosphorylation of CaM by diverse Ser/Thr- and Tyr-protein kinases has been recognized as an important additional manner to regulate this protein by fine-tuning its functionality. In this review, we shall cover developments done in recent years in which phospho-CaM has been implicated in signalling pathways that are relevant for the onset and progression of diverse pathophysiological processes. These include diverse systems playing a major role in carcinogenesis and tumour development, prion-induced encephalopathies and brain hypoxia, melatonin-regulated neuroendocrine disorders, hypertension, and heavy metal-induced cell toxicity.


Assuntos
Sinalização do Cálcio/fisiologia , Calmodulina/química , Calmodulina/metabolismo , Animais , Humanos , Hipóxia/metabolismo , Hipóxia/fisiopatologia , Fosforilação/fisiologia , Ligação Proteica/fisiologia , Estrutura Secundária de Proteína , Transdução de Sinais/fisiologia
10.
Biochem J ; 472(2): 195-204, 2015 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-26399481

RESUMO

The activity of calmodulin (CaM) is modulated not only by oscillations in the cytosolic concentration of free Ca(2+), but also by its phosphorylation status. In the present study, the role of tyrosine-phosphorylated CaM [P-(Tyr)-CaM] on the regulation of the epidermal growth factor receptor (EGFR) has been examined using in vitro assay systems. We show that phosphorylation of CaM by rat liver solubilized EGFR leads to a dramatic increase in the subsequent phosphorylation of poly-L-(Glu:Tyr) (PGT) by the receptor in the presence of ligand, both in the absence and in the presence of Ca(2+). This occurred in contrast with assays where P-(Tyr)-CaM accumulation was prevented by the presence of Ca(2+), absence of a basic cofactor required for CaM phosphorylation and/or absence of CaM itself. Moreover, an antibody against CaM, which inhibits its phosphorylation, prevented the extra ligand-dependent EGFR activation. Addition of purified P-(Tyr)-CaM, phosphorylated by recombinant c-Src (cellular sarcoma kinase) and free of non-phosphorylated CaM, obtained by affinity-chromatography using an immobilized anti-phospho-(Tyr)-antibody, also increased the ligand-dependent tyrosine kinase activity of the isolated EGFR toward PGT. Also a CaM(Y99D/Y138D) mutant mimicked the effect of P-(Tyr)-CaM on ligand-dependent EGFR activation. Finally, we demonstrate that P-(Tyr)-CaM binds to the same site ((645)R-R-R-H-I-V-R-K-R-T-L-R-R-L-L-Q(660)) as non-phosphorylated CaM, located at the cytosolic juxtamembrane region of the EGFR. These results show that P-(Tyr)-CaM is an activator of the EGFR and suggest that it could contribute to the CaM-mediated ligand-dependent activation of the receptor that we previously reported in living cells.


Assuntos
Calmodulina/metabolismo , Membrana Celular/metabolismo , Receptores ErbB/metabolismo , Processamento de Proteína Pós-Traducional , Proteínas Proto-Oncogênicas pp60(c-src)/metabolismo , Tirosina/metabolismo , Substituição de Aminoácidos , Animais , Sítios de Ligação , Calmodulina/antagonistas & inibidores , Calmodulina/genética , Calmodulina/isolamento & purificação , Linhagem Celular Tumoral , Membrana Celular/enzimologia , Receptores ErbB/química , Receptores ErbB/genética , Receptores ErbB/isolamento & purificação , Humanos , Ligantes , Masculino , Proteínas Mutantes/antagonistas & inibidores , Proteínas Mutantes/metabolismo , Proteínas do Tecido Nervoso/antagonistas & inibidores , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/isolamento & purificação , Proteínas do Tecido Nervoso/metabolismo , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Fosforilação , Proteínas Proto-Oncogênicas pp60(c-src)/genética , Ratos , Ratos Sprague-Dawley , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Sus scrofa
11.
Org Biomol Chem ; 13(30): 8196-204, 2015 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-26108188

RESUMO

The reversible O-linked attachment of single ß-D-N-acetylglucosamine (GlcNAc) moieties to serine/threonine residues in target proteins is a frequently occurring post-translational modification affecting the functionality of many cellular systems. In this report we present experimental evidence suggesting that the epidermal growth factor receptor (EGFR) is subjected to O-GlcNAcylation in human carcinoma epidermoid A431 cells and human lung carcinoma A549 cells. However, no signal was detected in human cervix adenocarcinoma HeLa cells or in mouse EGFR-T17 fibroblasts ectopically expressing the human EGFR. We detected a positive O-GlcNAcylation signal in the immunoprecipitated EGFR by Western blotting using two distinct specific anti-O-GlcNAc antibodies even after N-deglycosylation of the receptor using peptide-N-glycosidase F (PNGase F). Conversely, the presence of EGFR was detected by Western blotting using an anti-EGFR antibody in the immunocomplex of O-GlcNAcylated proteins immunoprecipitated with an anti-O-GlcNAc antibody. These signals were enhanced when the O-linked ß-N-acetylglucosaminidase (OGA) inhibitor Thiamet G was added to prevent the deglycosylation of the GlcNAc moiety(ies). Moreover, we also detected a positive signal in the immunoprecipitated and N-deglycosylated EGFR using PNGase F, and tunicamycin when the cells were metabolically labeled with azido-GlcNAc (GlcNAz), biotinylated and probed with a streptavidin-labeled peroxidase. Finally, EGFR and O-linked ß-N-acetylglucosamine transferase (OGT) co-immunoprecipitate, and incubation of the immunoprecipitated EGFR with the immunoprecipitated OGT in the presence of uridine 5'-diphospho-N-acetylglucosamine (UDP-GlcNAc) resulted in a significant enhancement of the EGFR O-GlcNAcylation signal as detected by Western blotting using an anti-O-GlcNAc antibody. We conclude that the human EGFR is subjected to O-GlcNAcylation in the A431 and A549 tumor cell lines.


Assuntos
Acetilglucosamina/metabolismo , Receptores ErbB/metabolismo , Acetilglucosaminidase/antagonistas & inibidores , Acetilglucosaminidase/metabolismo , Animais , Linhagem Celular Tumoral , Inibidores Enzimáticos/farmacologia , Glicosilação/efeitos dos fármacos , Humanos , Immunoblotting , Imunoprecipitação , Camundongos , Coloração e Rotulagem
12.
PLoS One ; 10(6): e0128783, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26058065

RESUMO

Src family non-receptor tyrosine kinases play a prominent role in multiple cellular processes, including: cell proliferation, differentiation, cell survival, stress response, and cell adhesion and migration, among others. And when deregulated by mutations, overexpression, and/or the arrival of faulty incoming signals, its hyperactivity contributes to the development of hematological and solid tumors. c-Src is a prototypical member of this family of kinases, which is highly regulated by a set of phosphorylation events. Other factor contributing to the regulation of Src activity appears to be mediated by the Ca2+ signal generated in cells by different effectors, where the Ca2+-receptor protein calmodulin (CaM) plays a key role. In this report we demonstrate that CaM directly interacts with Src in both Ca2+-dependent and Ca2+-independent manners in vitro and in living cells, and that the CaM antagonist N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide (W-7) inhibits the activation of this kinase induced by the upstream activation of the epidermal growth factor receptor (EGFR), in human carcinoma epidermoide A431 cells, and by hydrogen peroxide-induced oxidative stress, in both A431 cells and human breast adenocarcinoma SK-BR-3 cells. Furthermore, we show that the Ca2+/CaM complex strongly activates the auto-phosphorylation and tyrosine kinase activity of c-Src toward exogenous substrates, but most relevantly and for the first time, we demonstrate that Ca2+-free CaM (apo-CaM) exerts a far higher activatory action on Src auto-phosphorylation and kinase activity toward exogenous substrates than the one exerted by the Ca2+/CaM complex. This suggests that a transient increase in the cytosolic concentration of free Ca2+ is not an absolute requirement for CaM-mediated activation of Src in living cells, and that a direct regulation of Src by apo-CaM could be inferred.


Assuntos
Cálcio/metabolismo , Calmodulina/metabolismo , Quinases da Família src/metabolismo , Linhagem Celular Tumoral , Humanos , Ligação Proteica
13.
ScientificWorldJournal ; 2014: 830923, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25389535

RESUMO

Our success in producing an active epidermal growth factor receptor (EGFR) tyrosine kinase in Escherichia coli encouraged us to express the full-length receptor in the same host. Despite its large size, we were successful at producing the full-length EGFR protein fused to glutathione S-transferase (GST) that was detected by Western blot analysis. Moreover, we obtained a majoritarian truncated GST-EGFR form detectable by gel electrophoresis and Western blot. This truncated protein was purified and confirmed by MALDI-TOF/TOF analysis to belong to the N-terminal extracellular region of the EGFR fused to GST. Northern blot analysis showed two transcripts suggesting the occurrence of a transcriptional arrest.


Assuntos
Processamento Alternativo , Códon sem Sentido , Receptores ErbB/genética , Proteínas Recombinantes de Fusão/genética , Sequência de Aminoácidos , Clonagem Molecular , Receptores ErbB/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Glutationa Transferase/genética , Glutationa Transferase/metabolismo , Humanos , Dados de Sequência Molecular , Proteínas Recombinantes de Fusão/metabolismo , Transcrição Gênica
14.
PLoS One ; 9(7): e102523, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25013941

RESUMO

This study analyzes whether the release of nitric oxide (NO) and thromboxane A2 (TXA2) depends on the time lapsed since gonadal function is lost, and their correlation with the proliferation of vascular smooth muscle cells (VSMC) mediated by the epidermal growth factor receptor (EGFR). For this purpose, aortic and mesenteric artery segments from control and 6-weeks or 5-months orchidectomized rats were used to measure NO and TXA2 release. The results showed that the basal and acetylcholine (ACh)-induced NO release were decreased 6 weeks post-orchidectomy both in aorta and mesenteric artery, but were recovered 5 months thereafter up to levels similar to those found in arteries from control rats. The basal and ACh-induced TXA2 release increased in aorta and mesenteric artery 6 weeks post-orchidectomy, and was maintained at high levels 5 months thereafter. Since we previously observed that orchidectomy, which decreased testosterone level, enlarged the muscular layer of mesenteric arteries, the effect of testosterone on VSMC proliferation was analyzed. The results showed that treatment of cultured VSMC with testosterone downregulated mitogenic signaling pathways initiated by the ligand-dependent activation of the EGFR. In contrast, the EGFR pathways were constitutively active in mesenteric arteries of long-term orchidectomized rats. Thus, the exposure of mesenteric arteries from control rats to epidermal growth factor (EGF) induced the activation of EGFR signaling pathways. However, the addition of EGF to arteries from orchidectomized rats failed to induce a further activation of these pathways. In conclusion, this study shows that the release of NO depends on the time lapsed since the gonadal function is lost, while the release of TXA2 is already increased after short periods post-orchidectomy. The alterations in these signaling molecules could contribute to the constitutive activation of the EGFR and its downstream signaling pathways after long period post-orchidectomy enhancing the proliferation of the vascular muscular layer.


Assuntos
Aorta/metabolismo , Receptores ErbB/genética , Artérias Mesentéricas/metabolismo , Óxido Nítrico/metabolismo , Orquiectomia , Tromboxano A2/metabolismo , Acetilcolina/farmacologia , Animais , Aorta/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Endotélio Vascular/citologia , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/metabolismo , Fator de Crescimento Epidérmico/farmacologia , Receptores ErbB/agonistas , Receptores ErbB/metabolismo , Regulação da Expressão Gênica , Masculino , Artérias Mesentéricas/efeitos dos fármacos , Músculo Liso Vascular/citologia , Músculo Liso Vascular/efeitos dos fármacos , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/citologia , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/metabolismo , Óxido Nítrico/biossíntese , Ratos , Ratos Sprague-Dawley , Transdução de Sinais , Testosterona/farmacologia , Tromboxano A2/biossíntese , Fatores de Tempo , Técnicas de Cultura de Tecidos
15.
Biochim Biophys Acta ; 1843(2): 398-435, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24188867

RESUMO

Calmodulin (CaM) is a ubiquitous Ca(2+) receptor protein mediating a large number of signaling processes in all eukaryotic cells. CaM plays a central role in regulating a myriad of cellular functions via interaction with multiple target proteins. This review focuses on the action of CaM and CaM-dependent signaling systems in the control of vertebrate cell proliferation, programmed cell death and autophagy. The significance of CaM and interconnected CaM-regulated systems for the physiology of cancer cells including tumor stem cells, and processes required for tumor progression such as growth, tumor-associated angiogenesis and metastasis are highlighted. Furthermore, the potential targeting of CaM-dependent signaling processes for therapeutic use is discussed.


Assuntos
Apoptose , Autofagia , Calmodulina/metabolismo , Neoplasias/patologia , Animais , Proliferação de Células , Humanos , Modelos Biológicos
16.
J Pharm Pharm Sci ; 16(2): 177-89, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23958188

RESUMO

Signal transduction pathways essential for the survival and viability of the cell and that frequently present aberrant expression or function in tumors are attractive targets for pharmacological intervention in human cancers. In this short review we will describe the regulation exerted by the calcium-receptor protein calmodulin (CaM) on signaling routes involving the family of ErbB receptors - highlighting the epidermal growth factor receptor (EGFR/ErbB1) and ErbB2 - and the adaptor protein Grb7, a downstream signaling component of these receptors. The signaling mechanism of the ErbB/Grb7 axis and the regulation exerted by CaM on this pathway will be described. We will present a brief overview of the current efforts to inhibit the hyperactivity of ErbB receptors and Grb7 in tumors. The currently available information on targeting the CaM-binding site of these signaling proteins will be analyzed, and the pros and cons of directly targeting CaM versus the CaM-binding domain of the ErbB receptors and Grb7 as potential anti-cancer therapy will be discussed.


Assuntos
Calmodulina/metabolismo , Receptores ErbB/metabolismo , Proteína Adaptadora GRB7/metabolismo , Neoplasias/metabolismo , Humanos , Transdução de Sinais
17.
Biochem Biophys Res Commun ; 436(2): 271-7, 2013 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-23743201

RESUMO

The adaptor Grb7 is a calmodulin (CaM)-binding protein that participates in signaling pathways involved in cell migration, proliferation and the control of angiogenesis, and plays a significant role in tumor growth, its metastatic spread and tumor-associated neo-vasculature formation. In this report we show that deletion of the CaM-binding site of Grb7, located in the proximal region of its pleckstrin homology (PH) domain, impairs cell migration, cell attachment to the extracellular matrix, and the reorganization of the actin cytoskeleton occurring during this process. Moreover, we show that the cell-permeable CaM antagonists N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide (W-7) and N-(4-aminobutyl)-5-chloro-2-naphthalenesulfonamide (W-13) both retard the migration of cells expressing wild type Grb7, but not the migration of cells expressing the mutant protein lacking the CaM-binding site (Grb7Δ), underscoring the proactive role of CaM binding to Grb7 during this process.


Assuntos
Calmodulina/metabolismo , Movimento Celular/fisiologia , Matriz Extracelular/metabolismo , Proteína Adaptadora GRB7/metabolismo , Citoesqueleto de Actina/metabolismo , Sítios de Ligação/genética , Western Blotting , Calmodulina/antagonistas & inibidores , Proteínas de Ligação a Calmodulina/genética , Proteínas de Ligação a Calmodulina/metabolismo , Adesão Celular/fisiologia , Ensaios de Migração Celular/métodos , Movimento Celular/efeitos dos fármacos , Junções Célula-Matriz/metabolismo , Quinase 1 de Adesão Focal/metabolismo , Proteína Adaptadora GRB7/genética , Células HEK293 , Humanos , Microscopia Confocal , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Fosforilação , Deleção de Sequência , Sulfonamidas/farmacologia , Fatores de Tempo
18.
NMR Biomed ; 26(9): 1059-69, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23348935

RESUMO

Development of neovasculature is a necessary requirement for tumour growth and it provides additional opportunities for therapeutic intervention. However, current antiangiogenic therapies have limited efficacy, mostly because of the development of resistance. Hence, characterization of new antiangiogenic molecular targets is of considerable clinical interest. We report that a calmodulin-binding domain (CaM-BD) deletion mutant of the growth factor receptor bound protein 7 (Grb7) (denoted Grb7Δ) impairs tumour growth and associated angiogenesis in vivo. We implanted glioma C6 cells in rat brains transfected with an enhanced yellow fluorescent protein (EYFP) chimera of Grb7∆, its EYFP-Grb7 wild type counterpart, and EYFP alone. We systematically followed intracerebral growth of the tumours, their cellularity and the functional performance of tumour-associated microvasculature using magnetic resonance imaging, including anatomical T1W and T2W images and functional diffusion and perfusion parameters. Tumours grown from implanted C6 cells expressing EYFP-Grb7Δ developed slower, became smaller and presented lower apparent cellularity than those derived from cells expressing EYFP-Grb7 and EYFP. Vascular perfusion measurements within tumours derived from EYFP-Grb7∆-expressing cells showed significantly lower cerebral blood flow (CBF), cerebral blood volume (CBV) and mean transit time (MTT) values. These findings were independently validated by histological and immunohistochemical techniques. Taken together, these findings confirm that the CaM-BD of Grb7 plays an important role in tumour growth and associated angiogenesis in vivo, thus identifying this region of the protein as a novel target for antiangiogenic treatment.


Assuntos
Inibidores da Angiogênese/metabolismo , Proteína Adaptadora GRB7/metabolismo , Imageamento por Ressonância Magnética , Terapia de Alvo Molecular , Neoplasias/irrigação sanguínea , Neoplasias/patologia , Neovascularização Patológica/patologia , Animais , Proteínas de Bactérias , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Proteínas Luminescentes , Neoplasias/metabolismo , Ratos , Ratos Wistar , Proteínas Recombinantes de Fusão/metabolismo , Transfecção , Fator A de Crescimento do Endotélio Vascular/metabolismo
19.
Anticancer Res ; 32(5): 1565-72, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22593433

RESUMO

BACKGROUND/AIM: Blocking N-glycosylation of the epidermal growth factor receptor (EGFR) by tunicamycin inhibits its cellular accumulation. Due to the toxic potential of this drug, finding less drastic routes to reduce EGFR expression is desirable. MATERIALS AND METHODS: Four glycosylation mutants of Chinese hamster ovary (CHO) cells with defects in N-glycan processing and branch-end maturation were tested for EGFR gene expression, production, functionality and routing after transfection with a vector encoding for human EGFR. RESULTS: Lack of conversion of paucimannosidic to hybrid/complex-type N-glycans and drastic reductions in sialylation/galactosylation did not lead to major effects. In contrast, EGFR expression in a mutant with reduced presence of ß1,4-galactosyltransferases-I-VI was markedly reduced. Misrouting or defects in transfection/transcription were excluded. CONCLUSION: ß1,4-Galactosyl-transferases warrant for further attention as effector(s) in order to attenuate EGFR-dependent signaling.


Assuntos
Receptores ErbB/antagonistas & inibidores , Galactosiltransferases/fisiologia , Animais , Células CHO , Cricetinae , Cricetulus , Regulação para Baixo , Receptores ErbB/análise , Receptores ErbB/fisiologia , Glicosilação , Células HEK293 , Humanos , Fosforilação , Transfecção
20.
Nitric Oxide ; 26(3): 182-91, 2012 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-22401965

RESUMO

Nitric oxide (NO) works as a bi-modal effector of cell proliferation, inducing either the increase or decrease of cell growth when cells are exposed, respectively, to low or high NO concentrations. To get further insight into the action of NO, we tested the effect of short- and long-lived NO donors on the control of the cell cycle in human neuroblastoma NB69 cells. We demonstrated that long-time exposure of cells to NO not only decreased the expression and/or the phosphorylation of elements involved in the control of the G(1)/S transition, such as the transcriptional repressor pRb and cyclin D1, but also down-regulated systems controlling the S and G(2)/M phases, such as the phosphorylation of Cdk1(cdc2) and the expression of cyclins A and B1. Increasing concentrations of NO also induced a biphasic effect on the expression of cyclins D1, A and B1, while this effect was less pronounced for cyclin E expression, but the levels of mRNAs of those cyclins changed in a distinct and complex manner. NO also changed the phosphorylation pattern of cyclin E and decreased the levels of phospho-cyclins D1 and B1. Moreover, NO decreased the expression of the Cdk inhibitors p16(Ink4a) and p19(Ink4d), without affecting p27(Kip1). In contrast, NO induced a biphasic effect on p21(Cip1/Waf1) expression. The BRCA1/Chk1/p53 pathway mediated the upregulation of p21(Cip1/Waf1). We also demonstrated that the NO-mediated up-regulation of p21(Cip1/Waf1) was inversely correlated with the activation status of the p38MAPK pathway.


Assuntos
Proteína BRCA1/metabolismo , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Neuroblastoma/metabolismo , Óxido Nítrico/farmacologia , Proteínas Quinases/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/fisiologia , Linhagem Celular Tumoral , Quinase 1 do Ponto de Checagem , Ciclinas/metabolismo , Inibidores Enzimáticos/farmacologia , Humanos , Imidazóis/farmacologia , Neuroblastoma/patologia , Fosforilação/efeitos dos fármacos , Piridinas/farmacologia , Transdução de Sinais , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA