Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 52(2): 643-659, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38038247

RESUMO

Mislocalization of overexpressed CENP-A (Cse4 in budding yeast, Cnp1 in fission yeast, CID in flies) contributes to chromosomal instability (CIN) in yeasts, flies, and human cells. Mislocalization of CENP-A is observed in many cancers and this correlates with poor prognosis. Structural mechanisms that contribute to mislocalization of CENP-A are poorly defined. Here, we show that interaction of histone H4 with Cse4 facilitates an in vivo conformational change in Cse4 promoting its mislocalization in budding yeast. We determined that Cse4 Y193A mutant exhibits reduced sumoylation, mislocalization, interaction with histone H4, and lethality in psh1Δ and cdc48-3 strains; all these phenotypes are suppressed by increased gene dosage of histone H4. We developed a new in vivo approach, antibody accessibility (AA) assay, to examine the conformation of Cse4. AA assay showed that wild-type Cse4 with histone H4 is in an 'open' state, while Cse4 Y193A predominantly exhibits a 'closed' state. Increased gene dosage of histone H4 contributes to a shift of Cse4 Y193A to an 'open' state with enhanced sumoylation and mislocalization. We provide molecular insights into how Cse4-H4 interaction changes the conformational state of Cse4 in vivo. These studies advance our understanding for mechanisms that promote mislocalization of CENP-A in human cancers.


Assuntos
Proteínas Cromossômicas não Histona , Histonas , Proteínas de Saccharomyces cerevisiae , Humanos , Centrômero/metabolismo , Proteína Centromérica A/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Proteínas de Ligação a DNA/genética , Histonas/metabolismo , Neoplasias/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Sumoilação
2.
J Med Chem ; 57(19): 8099-110, 2014 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-25229643

RESUMO

Deregulation of ubiquitin conjugation or deconjugation has been implicated in the pathogenesis of many human diseases including cancer. The deubiquitinating enzyme USP1 (ubiquitin-specific protease 1), in association with UAF1 (USP1-associated factor 1), is a known regulator of DNA damage response and has been shown as a promising anticancer target. To further evaluate USP1/UAF1 as a therapeutic target, we conducted a quantitative high throughput screen of >400000 compounds and subsequent medicinal chemistry optimization of small molecules that inhibit the deubiquitinating activity of USP1/UAF1. Ultimately, these efforts led to the identification of ML323 (70) and related N-benzyl-2-phenylpyrimidin-4-amine derivatives, which possess nanomolar USP1/UAF1 inhibitory potency. Moreover, we demonstrate a strong correlation between compound IC50 values for USP1/UAF1 inhibition and activity in nonsmall cell lung cancer cells, specifically increased monoubiquitinated PCNA (Ub-PCNA) levels and decreased cell survival. Our results establish the druggability of the USP1/UAF1 deubiquitinase complex and its potential as a molecular target for anticancer therapies.


Assuntos
Antineoplásicos/síntese química , Proteínas de Arabidopsis/antagonistas & inibidores , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Neoplasias Pulmonares/tratamento farmacológico , Proteínas Nucleares/antagonistas & inibidores , Pirimidinas/síntese química , Proteases Específicas de Ubiquitina/antagonistas & inibidores , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Humanos , Antígeno Nuclear de Célula em Proliferação/metabolismo , Pirimidinas/farmacologia , Relação Estrutura-Atividade , Ubiquitinação
3.
Nat Chem Biol ; 10(4): 298-304, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24531842

RESUMO

Protein ubiquitination and deubiquitination are central to the control of a large number of cellular pathways and signaling networks in eukaryotes. Although the essential roles of ubiquitination have been established in the eukaryotic DNA damage response, the deubiquitination process remains poorly defined. Chemical probes that perturb the activity of deubiquitinases (DUBs) are needed to characterize the cellular function of deubiquitination. Here we report ML323 (2), a highly potent inhibitor of the USP1-UAF1 deubiquitinase complex with excellent selectivity against human DUBs, deSUMOylase, deneddylase and unrelated proteases. Using ML323, we interrogated deubiquitination in the cellular response to UV- and cisplatin-induced DNA damage and revealed new insights into the requirement of deubiquitination in the DNA translesion synthesis and Fanconi anemia pathways. Moreover, ML323 potentiates cisplatin cytotoxicity in non-small cell lung cancer and osteosarcoma cells. Our findings point to USP1-UAF1 as a key regulator of the DNA damage response and a target for overcoming resistance to the platinum-based anticancer drugs.


Assuntos
Antineoplásicos/síntese química , Antineoplásicos/farmacologia , Proteínas de Arabidopsis/antagonistas & inibidores , Dano ao DNA/fisiologia , Proteínas Nucleares/antagonistas & inibidores , Proteases Específicas de Ubiquitina/antagonistas & inibidores , Ubiquitinação/efeitos dos fármacos , Algoritmos , Butiratos/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Cisplatino/farmacologia , Ensaio de Unidades Formadoras de Colônias , Dano ao DNA/genética , DNA de Neoplasias/antagonistas & inibidores , DNA de Neoplasias/biossíntese , Resistencia a Medicamentos Antineoplásicos , Eletroforese em Gel de Poliacrilamida , Anemia de Fanconi/genética , Proteína do Grupo de Complementação D2 da Anemia de Fanconi/antagonistas & inibidores , Ensaios de Triagem em Larga Escala , Humanos , Indicadores e Reagentes , Compostos de Fenilureia/farmacologia , Pimozida/farmacologia , Antígeno Nuclear de Célula em Proliferação/efeitos dos fármacos , Antígeno Nuclear de Célula em Proliferação/metabolismo , RNA Interferente Pequeno/genética , Proteínas Recombinantes/química , Recombinação Genética/efeitos dos fármacos , Troca de Cromátide Irmã/efeitos dos fármacos
4.
Cell Biochem Biophys ; 67(1): 111-26, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23797609

RESUMO

Ubiquitination has emerged as an essential signaling mechanism in eukaryotes. Deubiquitinases (DUBs) counteract the activities of the ubiquitination machinery and provide another level of control in cellular ubiquitination. Not surprisingly, DUBs are subjected to stringent regulations. Besides regulation by the noncatalytic domains present in the DUB sequences, DUB-interacting proteins are increasingly realized as essential regulators for DUB activity and function. This review focuses on DUBs that are associated with WD40-repeat proteins. Many human ubiquitin-specific proteases (USPs) were found to interact with WD40-repeat proteins, but little is known as to how this interaction regulates the activity and function of USPs. In recent years, significant progress has been made in understanding a prototypical WD40-repeat protein-containing DUB complex that comprises USP1 and USP1-associated factor 1 (UAF1). It has been shown that UAF1 activates USP1 through a potential active-site modulation, and the complex formation between USP1 and UAF1 is regulated by serine phosphorylation. Recently, human USPs have been recognized as a promising target class for inhibitor discovery. Small molecule inhibitors targeting several human USPs have been reported. USP1 is involved in two major DNA damage response pathways, DNA translesion synthesis and the Fanconi anemia pathway. Inhibiting the USP1/UAF1 deubiquitinase complex represents a new strategy to potentiate cancer cells to DNA-crosslinking agents and to overcome resistance that has plagued clinical cancer chemotherapy. The progress in inhibitor discovery against USPs and the WD40-repeat protein-containing USP complex will be discussed.


Assuntos
Proteínas dos Microfilamentos/metabolismo , Proteases Específicas de Ubiquitina/metabolismo , Proteínas de Arabidopsis/metabolismo , Biocatálise , Reparo do DNA , Humanos , Proteínas Nucleares/metabolismo , Ligação Proteica , Ubiquitina/metabolismo , Proteases Específicas de Ubiquitina/antagonistas & inibidores , Proteases Específicas de Ubiquitina/classificação
5.
Biochemistry ; 51(13): 2829-39, 2012 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-22439892

RESUMO

Ubiquitin-specific proteases (USPs) constitute the largest family of the human deubiquitinating enzymes. USP1 belongs to the cysteine protease family and contains a catalytic triad comprised of C90, H593, and D751. Notably, the catalytic activity of USP1 is stimulated through the formation of a tight complex with a WD40 repeat protein UAF1 (USP1-associated factor 1). Our kinetic analyses revealed a general base catalysis in USP1/UAF1, in contrast to an ion-pair mechanism as demonstrated for papain and cathepsin. The pK(a) value of the catalytic cysteine was determined to be 8.67 ± 0.07 in a pH-dependent inactivation study of USP1/UAF1 by iodoacetamide. A normal solvent kinetic isotope effect of 2.8 for k(cat) and 3.0 for k(cat)/K(m) was observed in the USP1/UAF1-catalyzed hydrolysis of ubiquitin-AMC substrate. Moreover, proton inventory analysis supported the transfer of a single solvent-derived proton in the transition state. Our study also revealed the molecular basis for the activation of USP1 by UAF1. Although the pK(a) of the catalytic cysteine in USP1 and USP1/UAF1 was almost identical, the pK(a) of the catalytic histidine in USP1/UAF1 was 0.43 pH unit lower than that in USP1, which facilitates general base catalysis at a neutral pH and contributes to the elevated catalytic efficiency. We ruled out that the higher catalytic efficiency is due to a tighter binding of ubiquitin. Our results support a regulatory mechanism in which UAF1 activates USP1 by modulating its active site conformation. This finding has a general implication for the regulation of USPs that form complex with partner proteins.


Assuntos
Proteínas Nucleares/metabolismo , Biocatálise , Domínio Catalítico , Concentração de Íons de Hidrogênio , Hidrólise , Cinética , Proteínas Nucleares/antagonistas & inibidores , Cloreto de Sódio/química , Ubiquitina/farmacologia
6.
Chem Biol ; 18(11): 1390-400, 2011 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-22118673

RESUMO

Ubiquitin-specific proteases (USPs) have in recent years emerged as a promising therapeutic target class. We identified selective small-molecule inhibitors against a deubiquitinase complex, the human USP1/UAF1, through quantitative high throughput screening (qHTS) of a collection of bioactive molecules. The top inhibitors, pimozide and GW7647, inhibited USP1/UAF1 noncompetitively with a K(i) of 0.5 and 0.7 µM, respectively, and displayed selectivity against a number of deubiquitinases, deSUMOylase, and cysteine proteases. The USP1/UAF1 inhibitors act synergistically with cisplatin in inhibiting cisplatin-resistant non-small cell lung cancer (NSCLC) cell proliferation. USP1/UAF1 represents a promising target for drug intervention because of its involvement in translesion synthesis and Fanconi anemia pathway important for normal DNA damage response. Our results support USP1/UAF1 as a potential therapeutic target and provide an example of targeting the USP/WD40 repeat protein complex for inhibitor discovery.


Assuntos
Antineoplásicos/farmacologia , Cisplatino/farmacologia , Endopeptidases/metabolismo , Proteínas Nucleares/metabolismo , Proteínas de Arabidopsis , Butiratos/farmacologia , Carcinoma Pulmonar de Células não Pequenas/enzimologia , Linhagem Celular Tumoral , Proliferação de Células , Reparo do DNA , Resistencia a Medicamentos Antineoplásicos , Endopeptidases/química , Anemia de Fanconi/metabolismo , Humanos , Cinética , Proteínas Nucleares/antagonistas & inibidores , Compostos de Fenilureia/farmacologia , Pimozida/farmacologia , Ubiquitina/metabolismo , Proteases Específicas de Ubiquitina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA