Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biochem Pharmacol ; 215: 115695, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37481134

RESUMO

Post-translational modifications are an important mechanism in the regulation of protein expression, function, and degradation. Well-known post-translational modifications are phosphorylation, glycosylation, and ubiquitination. However, lipid modifications, including myristoylation, prenylation, and palmitoylation, are poorly studied. Since the early 2000s, researchers have become more interested in lipid modifications, especially palmitoylation. The number of articles in PubMed increased from about 350 between 2000 and 2005 to more than 600 annually during the past ten years. S-palmitoylation, where the 16-carbon saturated (C16:0) palmitic acid is added to free cysteine residues of proteins, is a reversible protein modification that can affect the expression, membrane localization, and function of the modified proteins. Various diseases like Huntington's and Alzheimer's disease have been linked to changes in protein palmitoylation. In humans, the addition of palmitic acid is mediated by 23 palmitoyl acyltransferases, also called DHHC proteins. The modification can be reversed by a few thioesterases or hydrolases. Numerous soluble and membrane-attached proteins are known to be palmitoylated, but among the approximately 400 solute carriers that are classified in 66 families, only 15 found in 8 families have so far been documented to be palmitoylated. Among the best-characterized transporters are the glucose transporters GLUT1 (SLC2A1) and GLUT4 (SLC2A4), the three monoamine transporters norepinephrine transporter (NET; SLC6A2), dopamine transporter (DAT; SLC6A3), and serotonin transporter (SERT; SLC6A4), and the sodium-calcium exchanger NCX1 (SLC8A1). While there is evidence from recent proteomics experiments that numerous solute carriers are palmitoylated, no details beyond the 15 transporters covered in this review are available.


Assuntos
Lipoilação , Ácido Palmítico , Humanos , Ácido Palmítico/metabolismo , Lipoilação/fisiologia , Processamento de Proteína Pós-Traducional , Fosforilação , Proteínas de Membrana/metabolismo , Proteínas da Membrana Plasmática de Transporte de Serotonina/metabolismo
2.
J Agric Food Chem ; 70(21): 6552-6560, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35603894

RESUMO

Estrone-3-sulfate (E3S) uptake mediated by organic anion transporting polypeptide 1B3 (OATP1B3) can be activated by epigallocatechin gallate (EGCG). In this study, by using chimeric transporters and site-directed mutagenesis, we found that Val386 in transmembrane domain 8 (TM8) is essential for OATP1B3's activation by EGCG. Kinetic studies showed that the loss of activation of 1B3-TM8 and 1B3-V386F in the presence of EGCG is due to their decreased substrate binding affinity and reduced maximal transport rate. The overall transport efficiencies of OATP1B3, 1B3-TM8, and 1B3-V386F in the absence and presence of EGCG are 8.6 ± 0.7 vs 15.9 ± 1.4 (p < 0.05), 11.2 ± 2.1 vs 2.7 ± 0.3 (p < 0.05), and 10.2 ± 1.0 vs 2.5 ± 0.3 (p < 0.05), respectively. While 1B3-V386F cannot be activated by EGCG, its transport activity for EGCG is also diminished. OATP1B3's activation by EGCG is substrate-dependent as EGCG inhibits OATP1B3-mediated pravastatin uptake. Furthermore, the activation of OATP1B3-mediated E3S uptake by quercetin 3-O-α-l-arabinopyranosyl(1 → 2)-α-l-rhamnopyranoside is not affected by TM8 and V386F. Taken together, the activation of OATP1B3 by small molecules is substrate- and modulator-dependent, and V386 in TM8 plays a critical role in the activation of OATP1B3-mediated E3S uptake by EGCG.


Assuntos
Transportadores de Ânions Orgânicos Sódio-Independentes , Transportadores de Ânions Orgânicos , Transporte Biológico , Catequina/análogos & derivados , Cinética , Transportador 1 de Ânion Orgânico Específico do Fígado/genética , Transportador 1 de Ânion Orgânico Específico do Fígado/metabolismo , Transportadores de Ânions Orgânicos/genética , Transportadores de Ânions Orgânicos/metabolismo , Transportadores de Ânions Orgânicos Sódio-Independentes/metabolismo , Membro 1B3 da Família de Transportadores de Ânion Orgânico Carreador de Soluto/genética , Membro 1B3 da Família de Transportadores de Ânion Orgânico Carreador de Soluto/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA