Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
1.
Arch Environ Contam Toxicol ; 86(4): 346-362, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38743081

RESUMO

It is postulated that below a transcriptomic-based point of departure, adverse effects are unlikely to occur, thereby providing a chemical concentration to use in screening level hazard assessment. The present study extends previous work describing a high-throughput fathead minnow assay that can provide full transcriptomic data after exposure to a test chemical. One-day post-hatch fathead minnows were exposed to ten concentrations of three representatives of four chemical modes of action: organophosphates, ecdysone receptor agonists, plant photosystem II inhibitors, and estrogen receptor agonists for 24 h. Concentration response modeling was performed on whole body gene expression data from each exposure, using measured chemical concentrations when available. Transcriptomic points of departure in larval fathead minnow were lower than apical effect concentrations across fish species but not always lower than toxic effect concentrations in other aquatic taxa like crustaceans and insects. The point of departure was highly dependent on measured chemical concentration which were often lower than the nominal concentration. Differentially expressed genes between chemicals within modes of action were compared and often showed statistically significant overlap. In addition, reproducibility between identical exposures using a positive control chemical (CuSO4) and variability associated with the transcriptomic point of departure using in silico sampling were considered. Results extend a transcriptomic-compatible fathead minnow high-throughput assay for possible use in ecological hazard screening.


Assuntos
Cyprinidae , Larva , Transcriptoma , Poluentes Químicos da Água , Animais , Transcriptoma/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Larva/efeitos dos fármacos
2.
Aquat Toxicol ; 261: 106607, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37354817

RESUMO

Several adverse outcome pathways (AOPs) have linked molecular initiating events like aromatase inhibition, androgen receptor (AR) agonism, and estrogen receptor (ER) antagonism to reproductive impairment in adult fish. Estrogen receptor agonists can also cause adverse reproductive effects, however, the early key events (KEs) in an AOP leading to this are mostly unknown. The primary aim of this study was to develop hypotheses regarding the potential mechanisms through which exposure to ER agonists might lead to reproductive impairment in female fish. Mature fathead minnows were exposed to 1 or 10 ng 17α-ethynylestradiol (EE2)/L or 10 or 100 µg bisphenol A (BPA)/L for 14 d. The response to EE2 and BPA was contrasted with the effects of 500 ng/L of 17ß-trenbolone (TRB), an AR agonist, as well as TRB combined with the low and high concentrations of EE2 or BPA tested individually. Exposure to 10 ng EE2/L, 100 µg BPA/L, TRB, or the various mixtures with TRB caused significant decreases in plasma concentrations of 17ß-estradiol. Exposure to TRB alone caused a significant reduction in plasma vitellogenin (VTG), but VTG was unaffected or even increased in females exposed to EE2 or BPA alone or, in most cases, in mixtures with TRB. Over the course of the 14-d exposure, the only treatments that clearly did not affect egg production were 1 ng EE2/L and 10 µg BPA/L. Based on these results and knowledge of hypothalamic-pituitary-gonadal axis function, we hypothesize an AOP whereby decreased production of maturation-inducing steroid leading to impaired oocyte maturation and ovulation, possibly due to negative feedback or direct inhibitory effects of membrane ER activation, could be responsible for causing adverse reproductive impacts in female fish exposed to ER agonists.


Assuntos
Rotas de Resultados Adversos , Cyprinidae , Poluentes Químicos da Água , Animais , Feminino , Androgênios/metabolismo , Poluentes Químicos da Água/toxicidade , Estrogênios/toxicidade , Estrogênios/metabolismo , Etinilestradiol/toxicidade , Etinilestradiol/metabolismo , Cyprinidae/metabolismo , Vitelogeninas/metabolismo
3.
Environ Toxicol Chem ; 42(4): 747-756, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36848318

RESUMO

Screening and testing of potential endocrine-disrupting chemicals for ecological effects are examples of risk assessment/regulatory activities that can employ adverse outcome pathways (AOPs) to establish linkages between readily measured alterations in endocrine function and whole organism- and population-level responses. Of particular concern are processes controlled by the hypothalamic-pituitary-gonadal/thyroidal (HPG/T) axes. However, the availability of AOPs suitable to meet this need is currently limited in terms of species and life-stage representation relative to the diversity of endpoints influenced by HPG/T function. In our report we describe two novel AOPs that comprise a simple AOP network focused on the effects of chemicals on sex differentiation during early development in fish. The first AOP (346) documents events starting with inhibition of cytochrome P450 aromatase (CYP19), resulting in decreased availability of 17ß-estradiol during gonad differentiation, which increases the occurrence of testis formation, resulting in a male-biased sex ratio and consequent population-level declines. The second AOP (376) is initiated by activation of the androgen receptor (AR), also during sexual differentiation, again resulting in a male-biased sex ratio and population-level effects. Both AOPs are strongly supported by existing physiological and toxicological evidence, including numerous fish studies with model CYP19 inhibitors and AR agonists. Accordingly, AOPs 346 and 376 provide a basis for more focused screening and testing of chemicals with the potential to affect HPG function in fish during early development. Environ Toxicol Chem 2023;42:747-756. Published 2023. This article is a U.S. Government work and is in the public domain in the USA.


Assuntos
Rotas de Resultados Adversos , Androgênios , Masculino , Animais , Aromatase/genética , Receptores Androgênicos/metabolismo , Razão de Masculinidade , Peixes/metabolismo
4.
Environ Sci Technol ; 57(9): 3794-3803, 2023 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-36800546

RESUMO

Given concerns about potential toxicological hazards of the thousands of data-poor per- and polyfluorinated alkyl substances (PFAS) currently in commerce and detected in the environment, tiered testing strategies that employ high-throughput in vitro screening as an initial testing tier have been implemented. The present study evaluated the effectiveness of previous in vitro screening for identifying PFAS capable, or incapable, of inducing estrogenic responses in fish exposed in vivo. Fathead minnows (Pimephales promelas) were exposed for 96 h to five PFAS (perfluorooctanoic acid [PFOA]; 1H,1H,8H,8H-perfluorooctane-1,8-diol [FC8-diol]; 1H,1H,10H,10H-perfluorodecane-1,10-diol [FC10-diol]; 1H,1H,8H,8H-perfluoro-3,6-dioxaoctane-1,8-diol [FC8-DOD]; and perfluoro-2-methyl-3-oxahexanoic acid [HFPO-DA]) that showed varying levels of in vitro estrogenic potency. In agreement with in vitro screening results, exposure to FC8-diol, FC10-diol, and FC8-DOD caused concentration-dependent increases in the expression of transcript coding for vitellogenin and estrogen receptor alpha and reduced expression of insulin-like growth factor and apolipoprotein eb. Once differences in bioconcentration were accounted for, the rank order of potency in vivo matched that determined in vitro. These results provide a screening level benchmark for worst-case estimates of potential estrogenic hazards of PFAS and a basis for identifying structurally similar PFAS to scrutinize for putative estrogenic activity.


Assuntos
Ácidos Alcanossulfônicos , Cyprinidae , Fluorocarbonos , Animais , Estrogênios/metabolismo , Estrona/metabolismo , Ácidos Alcanossulfônicos/metabolismo
5.
Environ Toxicol Chem ; 42(1): 100-116, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36282016

RESUMO

To reduce the use of intact animals for chemical safety testing, while ensuring protection of ecosystems and human health, there is a demand for new approach methodologies (NAMs) that provide relevant scientific information at a quality equivalent to or better than traditional approaches. The present case study examined whether bioactivity and associated potency measured in an in vitro screening assay for aromatase inhibition could be used together with an adverse outcome pathway (AOP) and mechanistically based computational models to predict previously uncharacterized in vivo effects. Model simulations were used to inform designs of 60-h and 10-21-day in vivo exposures of adult fathead minnows (Pimephales promelas) to three or four test concentrations of the in vitro aromatase inhibitor imazalil ranging from 0.12 to 260 µg/L water. Consistent with an AOP linking aromatase inhibition to reproductive impairment in fish, exposure to the fungicide resulted in significant reductions in ex vivo production of 17ß-estradiol (E2) by ovary tissue (≥165 µg imazalil/L), plasma E2 concentrations (≥74 µg imazalil/L), vitellogenin (Vtg) messenger RNA expression (≥165 µg imazalil/L), Vtg plasma concentrations (≥74 µg imazalil/L), uptake of Vtg into oocytes (≥260 µg imazalil/L), and overall reproductive output in terms of cumulative fecundity, number of spawning events, and eggs per spawning event (≥24 µg imazalil/L). Despite many potential sources of uncertainty in potency and efficacy estimates based on model simulations, observed magnitudes of apical effects were quite consistent with model predictions, and in vivo potency was within an order of magnitude of that predicted based on in vitro relative potency. Overall, our study suggests that NAMs and AOP-based approaches can support meaningful reduction and refinement of animal testing. Environ Toxicol Chem 2023;42:100-116. © 2022 SETAC. This article has been contributed to by U.S. Government employees and their work is in the public domain in the USA.


Assuntos
Cyprinidae , Ovário , Humanos , Animais , Feminino , Aromatase/genética , Aromatase/metabolismo , Fadrozol/toxicidade , Ecotoxicologia , Ecossistema , Estradiol/metabolismo , Cyprinidae/fisiologia , Vitelogeninas/metabolismo
6.
Environ Toxicol Chem ; 42(2): 340-366, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36165576

RESUMO

To help meet the objectives of the Great Lakes Restoration Initiative with regard to increasing knowledge about toxic substances, 223 pesticides and pesticide transformation products were monitored in 15 Great Lakes tributaries using polar organic chemical integrative samplers. A screening-level assessment of their potential for biological effects was conducted by computing toxicity quotients (TQs) for chemicals with available US Environmental Protection Agency (USEPA) Aquatic Life Benchmark values. In addition, exposure activity ratios (EAR) were calculated using information from the USEPA ToxCast database. Between 16 and 81 chemicals were detected per site, with 97 unique compounds detected overall, for which 64 could be assessed using TQs or EARs. Ten chemicals exceeded TQ or EAR levels of concern at two or more sites. Chemicals exceeding thresholds included seven herbicides (2,4-dichlorophenoxyacetic acid, diuron, metolachlor, acetochlor, atrazine, simazine, and sulfentrazone), a transformation product (deisopropylatrazine), and two insecticides (fipronil and imidacloprid). Watersheds draining agricultural and urban areas had more detections and higher concentrations of pesticides compared with other land uses. Chemical mixtures analysis for ToxCast assays associated with common modes of action defined by gene targets and adverse outcome pathways (AOP) indicated potential activity on biological pathways related to a range of cellular processes, including xenobiotic metabolism, extracellular signaling, endocrine function, and protection against oxidative stress. Use of gene ontology databases and the AOP knowledgebase within the R-package ToxMixtures highlighted the utility of ToxCast data for identifying and evaluating potential biological effects and adverse outcomes of chemicals and mixtures. Results have provided a list of high-priority chemicals for future monitoring and potential biological effects warranting further evaluation in laboratory and field environments. Environ Toxicol Chem 2023;42:340-366. Published 2022. This article is a U.S. Government work and is in the public domain in the USA. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.


Assuntos
Herbicidas , Praguicidas , Poluentes Químicos da Água , Praguicidas/toxicidade , Praguicidas/análise , Monitoramento Ambiental/métodos , Lagos/química , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/análise , Herbicidas/análise
7.
Environ Toxicol Chem ; 41(4): 1016-1041, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35170813

RESUMO

With improved analytical techniques, environmental monitoring studies are increasingly able to report the occurrence of tens or hundreds of chemicals per site, making it difficult to identify the most relevant chemicals from a biological standpoint. For the present study, organic chemical occurrence was examined, individually and as mixtures, in the context of potential biological effects. Sediment was collected at 71 Great Lakes (USA/Canada) tributary sites and analyzed for 87 chemicals. Multiple risk-based lines of evidence were used to prioritize chemicals and locations, including comparing sediment concentrations and estimated porewater concentrations with established whole-organism benchmarks (i.e., sediment and water quality criteria and screening values) and with high-throughput toxicity screening data from the US Environmental Protection Agency's ToxCast database, estimating additive effects of chemical mixtures on common ToxCast endpoints, and estimating toxic equivalencies for mixtures of alkylphenols and polycyclic aromatic hydrocarbons (PAHs). This multiple-lines-of-evidence approach enabled the screening of more chemicals, mitigated the uncertainties of individual approaches, and strengthened common conclusions. Collectively, at least one benchmark/screening value was exceeded for 54 of the 87 chemicals, with exceedances observed at all 71 of the monitoring sites. Chemicals with the greatest potential for biological effects, both individually and as mixture components, were bisphenol A, 4-nonylphenol, indole, carbazole, and several PAHs. Potential adverse outcomes based on ToxCast gene targets and putative adverse outcome pathways relevant to individual chemicals and chemical mixtures included tumors, skewed sex ratios, reproductive dysfunction, hepatic steatosis, and early mortality, among others. The results provide a screening-level prioritization of chemicals with the greatest potential for adverse biological effects and an indication of sites where they are most likely to occur. Environ Toxicol Chem 2022;41:1016-1041. Published 2022. This article is a U.S. Government work and is in the public domain in the USA. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.


Assuntos
Hidrocarbonetos Policíclicos Aromáticos , Poluentes Químicos da Água , Monitoramento Ambiental/métodos , Lagos , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade , Qualidade da Água
8.
Environ Pollut ; 289: 117928, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34426200

RESUMO

Previous studies have detected numerous organic contaminants and in vitro bioactivities in surface water from the South Platte River near Denver, Colorado, USA. To evaluate the temporal and spatial distribution of selected contaminants of emerging concern, water samples were collected throughout 2018 and 2019 at 11 sites within the S. Platte River and surrounding tributaries with varying proximities to a major wastewater treatment plant (WWTP). Water samples were analyzed for pharmaceuticals, pesticides, steroid hormones, and wastewater indicators and screened for in vitro biological activities. Multiplexed, in vitro assays that simultaneously screen for agonistic activity against 24 human nuclear receptors detected estrogen receptor (ER), peroxisome proliferator activated receptor-gamma (PPARγ), and glucocorticoid receptor (GR) bioactivities in water samples near the WWTP outflow. Targeted in vitro bioassays assessing ER, GR, and PPARγ agonism corroborated bioactivities for ER (up to 55 ± 9.7 ng/L 17ß-estradiol equivalents) and GR (up to 156 ± 28 ng/L dexamethasone equivalents), while PPARγ activity was not confirmed. To evaluate the potential in vivo significance of the bioactive contaminants, sexually-mature fathead minnows were caged at six locations upstream and downstream of the WWTP for 5 days after which targeted gene expression analyses were performed. Significant up-regulation of male hepatic vitellogenin was observed at sites with corresponding in vitro ER activity. No site-related differences in GR-related transcript abundance were detected in female adipose or male livers, suggesting observed environmental concentrations of GR-active contaminants do not induce a detectable in vivo response. In line with the lack of detectable targeted in vitro PPARÉ£ activity, there were no significant effects on PPARÉ£-related gene expression. Although the chemicals responsible for GR and PPAR-mediated bioactivities are unknown, results from the present study provide insights into the significance (or lack thereof) of these bioactivities relative to short-term in situ fish exposures.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Animais , Colorado , Monitoramento Ambiental , Feminino , Humanos , Masculino , Rios , Águas Residuárias , Poluentes Químicos da Água/análise
9.
Environ Toxicol Chem ; 40(11): 2959-2967, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34416019

RESUMO

This report describes a novel adverse outcome pathway (AOP) on uncoupling of oxidative phosphorylation (OXPHOS) leading to growth inhibition via decreased adenosine triphosphate (ATP) pool and cell proliferation (AOPWiki, AOP263). Oxidative phosphorylation is a major metabolic process that produces the primary form of energy (ATP) supporting various biological functions. Uncoupling of OXPHOS is a widely recognized mode of action of many chemicals and is known to affect growth via different biological processes. Capturing these events in an AOP can greatly facilitate mechanistic understanding and hazard assessment of OXPHOS uncouplers and growth regulators in eukaryotes. The four proposed key events in this AOP are intentionally generalized to cover a wide range of organisms and stressors. Three out of four events can be measured using in vitro high-throughput bioassays, whereas for most organisms, growth inhibition can also be measured in a high-throughput format using standard in vivo toxicity test protocols. The key events and key event relationships in this AOP are further assessed for weight of evidence using evolved Bradford-Hill considerations. The overall confidence levels range from moderate to high with only a few uncertainties and inconsistencies. The chemical applicability domain of the AOP mainly contains protonophores uncouplers, which can be predicated using the quantitative structure-activity relationship (QSAR) approach and validated using in vitro high-throughput bioassays. The biological domain of the AOP basically covers all eukaryotes. The AOP described in this report is part of a larger AOP network linking uncoupling of OXPHOS to growth inhibition, and is considered highly relevant and applicable to both human health and ecological risk assessments.


Assuntos
Rotas de Resultados Adversos , Fenômenos Biológicos , Trifosfato de Adenosina , Proliferação de Células , Humanos , Fosforilação Oxidativa , Medição de Risco
10.
Environ Toxicol Chem ; 40(4): 1155-1170, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33332681

RESUMO

The present study evaluated whether in vitro measures of aromatase inhibition as inputs into a quantitative adverse outcome pathway (qAOP) construct could effectively predict in vivo effects on 17ß-estradiol (E2) and vitellogenin (VTG) concentrations in female fathead minnows. Five chemicals identified as aromatase inhibitors in mammalian-based ToxCast assays were screened for their ability to inhibit fathead minnow aromatase in vitro. Female fathead minnows were then exposed to 3 of those chemicals: letrozole, epoxiconazole, and imazalil in concentration-response (5 concentrations plus control) for 24 h. Consistent with AOP-based expectations, all 3 chemicals caused significant reductions in plasma E2 and hepatic VTG transcription. Characteristic compensatory upregulation of aromatase and follicle-stimulating hormone receptor (fshr) transcripts in the ovary were observed for letrozole but not for the other 2 compounds. Considering the overall patterns of concentration-response and temporal concordance among endpoints, data from the in vivo experiments strengthen confidence in the qualitative relationships outlined by the AOP. Quantitatively, the qAOP model provided predictions that fell within the standard error of measured data for letrozole but not for imazalil and epoxiconazole. However, the inclusion of measured plasma concentrations of the test chemicals as inputs improved model predictions, with all predictions falling within the range of measured values. Results highlight both the utility and limitations of the qAOP and its potential use in 21st century ecotoxicology. Environ Toxicol Chem 2021;40:1155-1170. © 2020 SETAC. This article has been contributed to by US Government employees and their work is in the public domain in the USA.


Assuntos
Cyprinidae , Fadrozol , Animais , Aromatase/genética , Ecotoxicologia , Estradiol , Fadrozol/toxicidade , Feminino , Ovário , Vitelogeninas/genética
11.
Environ Sci Technol ; 55(2): 974-984, 2021 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-33373525

RESUMO

Monitoring of the Colorado River near the Moab, Utah, wastewater treatment plant (WWTP) outflow has detected pharmaceuticals, hormones, and estrogen-receptor (ER)-, glucocorticoid receptor (GR)-, and peroxisome proliferator-activated receptor-gamma (PPARγ)-mediated biological activities. The aim of the present multi-year study was to assess effects of a WWTP replacement on bioactive chemical (BC) concentrations. Water samples were collected bimonthly, pre- and post-replacement, at 11 sites along the Colorado River upstream and downstream of the WWTP and analyzed for in vitro bioactivities (e.g., agonism of ER, GR, and PPARγ) and BC concentrations; fathead minnows were cage deployed pre- and post-replacement at sites with varying proximities to the WWTP. Before the WWTP replacement, in vitro ER (24 ng 17ß-estradiol equivalents/L)-, GR (60 ng dexamethasone equivalents/L)-, and PPARγ-mediated activities were detected at the WWTP outflow but diminished downstream. In March 2018, the WWTP effluent was acutely toxic to the fish, likely due to elevated ammonia concentrations. Following the WWTP replacement, ER, GR, and PPARγ bioactivities were reduced by approximately 60-79%, no toxicity was observed in caged fish, and there were marked decreases in concentrations of many BCs. Results suggest that replacement of the Moab WWTP achieved a significant reduction in BC concentrations to the Colorado River.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Animais , Colorado , Monitoramento Ambiental , Utah , Eliminação de Resíduos Líquidos , Águas Residuárias , Poluentes Químicos da Água/análise
12.
Environ Sci Technol ; 54(19): 12142-12153, 2020 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-32901485

RESUMO

Environmental pollution is a threat to humans and wildlife species. Of particular concern are endocrine disrupting chemicals (EDCs). An important target of EDCs is nuclear receptors (NRs) that control endocrine and metabolic responses through transcriptional regulation. Owing in part to structural differences of NRs, adverse effects of EDCs vary significantly among species. Here, we describe a multiplexed reporter assay (the Ecotox FACTORIAL) enabling parallel assessment of compounds' effects on estrogen, androgen, thyroid, and PPARγ receptors of representative mammals, birds, reptiles, amphibians, and fish. The Ecotox FACTORIAL is a single-well assay comprising a set of species-specific, one-hybrid GAL4-NR reporter constructs transiently transfected into test cells. To harmonize cross-species assessments, we used a combination of two approaches. First, we used the same type of test cells for all reporters; second, we implemented a parallel detection of reporter RNAs. The assay demonstrated excellent quality, reproducibility, and insignificant intra-assay variability. Importantly, the EC50 values for NR ligands were consistent with those reported for conventional assays. Using the assay allowed ranking the hazard potential of environmental pollutants (e.g., bisphenols, polycyclic aromatic hydrocarbons, and synthetic progestins) across species. Furthermore, the assay permitted detecting taxa-specific effects of surface water samples. Therefore, the Ecotox FACTORIAL enables harmonized assessment of the endocrine and metabolic disrupting activity of chemicals and surface water in humans as well as in wildlife species.


Assuntos
Disruptores Endócrinos , Poluentes Ambientais , Animais , Bioensaio , Disruptores Endócrinos/toxicidade , Sistema Endócrino , Poluentes Ambientais/farmacologia , Humanos , Reprodutibilidade dos Testes
13.
Environ Toxicol Chem ; 39(4): 913-922, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31965587

RESUMO

Predictive approaches to assessing the toxicity of contaminant mixtures have been largely limited to chemicals that exert effects through the same biological molecular initiating event. However, by understanding specific pathways through which chemicals exert effects, it may be possible to identify shared "downstream" nodes as the basis for forecasting interactive effects of chemicals with different molecular initiating events. Adverse outcome pathway (AOP) networks conceptually support this type of analysis. We assessed the utility of a simple AOP network for predicting the effects of mixtures of an aromatase inhibitor (fadrozole) and an androgen receptor agonist (17ß-trenbolone) on aspects of reproductive endocrine function in female fathead minnows. The fish were exposed to multiple concentrations of fadrozole and 17ß-trenbolone individually or in combination for 48 or 96 h. Effects on 2 shared nodes in the AOP network, plasma 17ß-estradiol (E2) concentration and vitellogenin (VTG) production (measured as hepatic vtg transcripts) responded as anticipated to fadrozole alone but were minimally impacted by 17ß-trenbolone alone. Overall, there were indications that 17ß-trenbolone enhanced decreases in E2 and vtg in fadrozole-exposed fish, as anticipated, but the results often were not statistically significant. Failure to consistently observe hypothesized interactions between fadrozole and 17ß-trenbolone could be due to several factors, including lack of impact of 17ß-trenbolone, inherent biological variability in the endpoints assessed, and/or an incomplete understanding of interactions (including feedback) between different pathways within the hypothalamic-pituitary-gonadal axis. Environ Toxicol Chem 2020;39:913-922. © 2020 SETAC.


Assuntos
Rotas de Resultados Adversos , Androgênios/toxicidade , Inibidores da Aromatase/toxicidade , Cyprinidae/fisiologia , Sistema Endócrino/efeitos dos fármacos , Reprodução/efeitos dos fármacos , Animais , Cyprinidae/metabolismo , Sinergismo Farmacológico , Estradiol/metabolismo , Fadrozol/toxicidade , Feminino , Sistema Hipotálamo-Hipofisário/efeitos dos fármacos , Masculino , Ovário/efeitos dos fármacos , Ovário/metabolismo , Acetato de Trembolona/toxicidade , Vitelogeninas/metabolismo
14.
Sci Total Environ ; 699: 134297, 2020 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-31683213

RESUMO

Although endocrine disrupting compounds have been detected in wastewater and surface waters worldwide using a variety of in vitro effects-based screening tools, e.g. bioassays, few have examined potential attenuation of environmental contaminants by both natural (sorption, degradation, etc.) and anthropogenic (water treatment practices) processes. This study used several bioassays and quantitative chemical analyses to assess residence-time weighted samples at six sites along a river in the northeastern United States beginning upstream from a wastewater treatment plant outfall and proceeding downstream along the stream reach to a drinking water treatment plant. Known steroidal estrogens were quantified and changes in signaling pathway molecular initiating events (activation of estrogen, androgen, glucocorticoid, peroxisome proliferator-activated, pregnane X receptor, and aryl hydrocarbon receptor signaling networks) were identified in water extracts. In initial multi-endpoint assays geographic and receptor-specific endocrine activity patterns in transcription factor signatures and nuclear receptor activation were discovered. In subsequent single endpoint receptor-specific bioassays, estrogen (16 of 18 samples; 0.01 to 28 ng estradiol equivalents [E2Eqs]/L) glucocorticoid (3 of 18 samples; 1.8 to 21 ng dexamethasone equivalents [DexEqs]/L), and androgen (2 of 18 samples; 0.95 to 2.1 ng dihydrotestosterone equivalents [DHTEqs]/L) receptor transcriptional activation occurred above respective assay method detection limits (0.04 ng E2Eqs/L, 1.2 ng DexEqs/L, and 0.77 ng DHTEqs/L) in multiple sampling events. Estrogen activity, the most often detected, correlated well with measured concentrations of known steroidal estrogens (r2 = 0.890). Overall, activity indicative of multiple types of endocrine active compounds was highest in wastewater effluent samples, while activity downstream was progressively lower, and negligible in unfinished treated drinking water. Not only was estrogenic and glucocorticoid activity confirmed in the effluent by utilizing multiple methods concurrently, but other activated signaling networks that historically received less attention (i.e. peroxisome proliferator-activated receptor) were also detected.


Assuntos
Bioensaio , Disruptores Endócrinos/análise , Monitoramento Ambiental , Poluentes Químicos da Água/análise , Androgênios , Fatores de Transcrição Hélice-Alça-Hélice Básicos , Estradiol , Estrogênios , Estrona , New England , Receptores de Hidrocarboneto Arílico , Rios , Águas Residuárias/química , Purificação da Água
15.
Environ Sci Technol ; 53(17): 10470-10478, 2019 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-31386814

RESUMO

Quantitative adverse outcome pathways (qAOPs) describe quantitative response-response relationships that can predict the probability or severity of an adverse outcome for a given magnitude of chemical interaction with a molecular initiating event. However, the taxonomic domain of applicability for these predictions is largely untested. The present study began defining this applicability for a previously described qAOP for aromatase inhibition leading to decreased fecundity developed using data from fathead minnow (Pimephales promelas). This qAOP includes quantitative response-response relationships describing plasma 17ß-estradiol (E2) as a function of plasma fadrozole, plasma vitellogenin (VTG) as a function of plasma E2, and fecundity as a function of plasma VTG. These quantitative response-response relationships simulated plasma E2, plasma VTG, and fecundity measured in female zebrafish (Danio rerio) exposed to fadrozole for 21 days but not these responses measured in female Japanese medaka (Oryzias latipes). However, Japanese medaka had different basal levels of plasma E2, plasma VTG, and fecundity. Normalizing basal levels of each measurement to equal those of female fathead minnow enabled the relationships to accurately simulate plasma E2, plasma VTG, and fecundity measured in female Japanese medaka. This suggests that these quantitative response-response relationships are conserved across these three fishes when considering relative change rather than absolute measurements. The present study represents an early step toward defining the appropriate taxonomic domain of applicability and extending the regulatory applications of this qAOP.


Assuntos
Aromatase , Cyprinidae , Animais , Estradiol , Fadrozol , Feminino , Fertilidade , Oócitos , Vitelogeninas
16.
Environ Sci Technol ; 53(15): 8611-8620, 2019 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-31287672

RESUMO

In a recent U.S. Geological Survey/U.S. Environmental Protection Agency study assessing more than 700 organic compounds in 38 streams, in vitro assays indicated generally low estrogen, androgen, and glucocorticoid receptor activities, with 13 surface waters with 17ß-estradiol-equivalent (E2Eq) activities greater than a 1-ng/L estimated effects-based trigger value for estrogenic effects in male fish. Among the 36 samples assayed for mutagenicity in the Salmonella bioassay (reported here), 25% had low mutagenic activity and 75% were not mutagenic. Endocrine and mutagenic activities of the water samples were well correlated with each other and with the total number and cumulative concentrations of detected chemical contaminants. To test the predictive utility of knowledge-base-leveraging approaches, site-specific predicted chemical-gene (pCGA) and predicted analogous pathway-linked (pPLA) association networks identified in the Comparative Toxicogenomics Database were compared with observed endocrine/mutagenic bioactivities. We evaluated pCGA/pPLA patterns among sites by cluster analysis and principal component analysis and grouped the pPLA into broad mode-of-action classes. Measured E2eq and mutagenic activities correlated well with predicted pathways. The pPLA analysis also revealed correlations with signaling, metabolic, and regulatory groups, suggesting that other effects pathways may be associated with chemical contaminants in these waters and indicating the need for broader bioassay coverage to assess potential adverse impacts.


Assuntos
Rios , Poluentes Químicos da Água , Animais , Bioensaio , Monitoramento Ambiental , Estrogênios , Masculino , Testes de Mutagenicidade , Mutagênicos
17.
Environ Sci Technol ; 53(2): 973-983, 2019 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-30548063

RESUMO

While chemical analysis of contaminant mixtures remains an essential component of environmental monitoring, bioactivity-based assessments using in vitro systems increasingly are used in the detection of biological effects. Historically, in vitro assessments focused on a few biological pathways, for example, aryl hydrocarbon receptor (AhR) or estrogen receptor (ER) activities. High-throughput screening (HTS) technologies have greatly increased the number of biological targets and processes that can be rapidly assessed. Here we screened extracts of surface waters from a nationwide survey of United States streams for bioactivities associated with 69 different end points using two multiplexed HTS assays. Bioactivity of extracts from 38 streams was evaluated and compared with concentrations of over 700 analytes to identify chemicals contributing to observed effects. Eleven primary biological end points were detected. Pregnane X receptor (PXR) and AhR-mediated activities were the most commonly detected. Measured chemicals did not completely account for AhR and PXR responses. Surface waters with AhR and PXR effects were associated with low intensity, developed land cover. Likewise, elevated bioactivities frequently associated with wastewater discharges included endocrine-related end points ER and glucocorticoid receptor. These results underscore the value of bioassay-based monitoring of environmental mixtures for detecting biological effects that could not be ascertained solely through chemical analyses.


Assuntos
Rios , Poluentes Químicos da Água , Misturas Complexas , Monitoramento Ambiental , Inquéritos e Questionários , Estados Unidos
18.
Environ Pollut ; 239: 706-713, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29715690

RESUMO

Rivers in the arid Western United States face increasing influences from anthropogenic contaminants due to population growth, urbanization, and drought. To better understand and more effectively track the impacts of these contaminants, biologically-based monitoring tools are increasingly being used to complement routine chemical monitoring. This study was initiated to assess the ability of both targeted and untargeted biologically-based monitoring tools to discriminate impacts of two adjacent wastewater treatment plants (WWTPs) on Colorado's South Platte River. A cell-based estrogen assay (in vitro, targeted) determined that water samples collected downstream of the larger of the two WWTPs displayed considerable estrogenic activity in its two separate effluent streams. Hepatic vitellogenin mRNA expression (in vivo, targeted) and NMR-based metabolomic analyses (in vivo, untargeted) from caged male fathead minnows also suggested estrogenic activity downstream of the larger WWTP, but detected significant differences in responses from its two effluent streams. The metabolomic results suggested that these differences were associated with oxidative stress levels. Finally, partial least squares regression was used to explore linkages between the metabolomics responses and the chemical contaminants that were detected at the sites. This analysis, along with univariate statistical approaches, identified significant covariance between the biological endpoints and estrone concentrations, suggesting the importance of this contaminant and recommending increased focus on its presence in the environment. These results underscore the benefits of a combined targeted and untargeted biologically-based monitoring strategy when used alongside contaminant monitoring to more effectively assess ecological impacts of exposures to complex mixtures in surface waters.


Assuntos
Cyprinidae/metabolismo , Monitoramento Ambiental/métodos , Estrogênios/análise , Rios/química , Águas Residuárias/análise , Poluentes Químicos da Água/análise , Animais , Colorado , Estrona/análise , Masculino , Metabolômica , Vitelogeninas/metabolismo , Purificação da Água/normas
19.
Toxicol Sci ; 163(2): 500-515, 2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29529260

RESUMO

The U.S. Environmental Protection Agency's ToxCast program has screened thousands of chemicals for biological activity, primarily using high-throughput in vitro bioassays. Adverse outcome pathways (AOPs) offer a means to link pathway-specific biological activities with potential apical effects relevant to risk assessors. Thus, efforts are underway to develop AOPs relevant to pathway-specific perturbations detected in ToxCast assays. Previous work identified a "cytotoxic burst" (CTB) phenomenon wherein large numbers of the ToxCast assays begin to respond at or near test chemical concentrations that elicit cytotoxicity, and a statistical approach to defining the bounds of the CTB was developed. To focus AOP development on the molecular targets corresponding to ToxCast assays indicating pathway-specific effects, we conducted a meta-analysis to identify which assays most frequently respond at concentrations below the CTB. A preliminary list of potentially important, target-specific assays was determined by ranking assays by the fraction of chemical hits below the CTB compared with the number of chemicals tested. Additional priority assays were identified using a diagnostic-odds-ratio approach which gives greater ranking to assays with high specificity but low responsivity. Combined, the two prioritization methods identified several novel targets (e.g., peripheral benzodiazepine and progesterone receptors) to prioritize for AOP development, and affirmed the importance of a number of existing AOPs aligned with ToxCast targets (e.g., thyroperoxidase, estrogen receptor, aromatase). The prioritization approaches did not appear to be influenced by inter-assay differences in chemical bioavailability. Furthermore, the outcomes were robust based on a variety of different parameters used to define the CTB.


Assuntos
Rotas de Resultados Adversos , Substâncias Perigosas/toxicidade , Ensaios de Triagem em Larga Escala/métodos , Testes de Toxicidade/métodos , Toxicologia/métodos , Animais , Disponibilidade Biológica , Sobrevivência Celular/efeitos dos fármacos , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/metabolismo , Substâncias Perigosas/metabolismo , Humanos , Valor Preditivo dos Testes
20.
Gen Comp Endocrinol ; 252: 79-87, 2017 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-28736226

RESUMO

Cytochrome P450 aromatase catalyzes conversion of C19 androgens to C18 estrogens and is critical for normal reproduction in female vertebrates. Fadrozole is a model aromatase inhibitor that has been shown to suppress estrogen production in the ovaries of fish. However, little is known about the early impacts of aromatase inhibition on steroid production and gene expression in fish. Adult female fathead minnows (Pimephales promelas) were exposed via water to 0, 5, or 50µg fadrozole/L for a time-course of 0.5, 1, 2, 4, and 6h, or 0 or 50µg fadrozole/L for a time-course of 6, 12, and 24h. We examined ex vivo ovarian 17ß-estradiol (E2) and testosterone (T) production, and plasma E2 concentrations from each study. Expression profiles of genes known or hypothesized to be impacted by fadrozole including aromatase (cytochrome P450 [cyp] 19a1a), steriodogenic acute regulatory protein (star), cytochrome P450 side-chain cleavage (cyp11a), cytochrome P450 17 alpha hydroxylase/17,20 lyase (cyp17), and follicle stimulating hormone receptor (fshr) were measured in the ovaries by quantitative real-time polymerase chain reaction (QPCR). In addition, broader ovarian gene expression was examined using a 15k fathead minnow microarray. The 5µg/L exposure significantly reduced ex vivo E2 production by 6h. In the 50µg/L treatment, ex vivo E2 production was significantly reduced after just 2h of exposure and remained depressed at all time-points examined through 24h. Plasma E2 concentrations were significantly reduced as early as 4h after initiation of exposure to either 5 or 50µg fadrozole/L and remained depressed throughout 24h in the 50µg/L exposure. Ex vivo T concentrations remained unchanged throughout the time-course. Expression of transcripts involved in steroidogenesis increased within the first 24h suggesting rapid induction of a mechanism to compensate for fadrozole inhibition of aromatase. Microarray results also showed fadrozole exposure caused concentration- and time-dependent changes in gene expression profiles in many HPG-axis pathways as early as 4h. This study provides insights into the very rapid effects of aromatase inhibition on steroidogenic processes in fish.


Assuntos
Inibidores da Aromatase/farmacologia , Cyprinidae/genética , Fadrozol/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Ovário/metabolismo , Esteroides/biossíntese , Animais , Cyprinidae/sangue , Cyprinidae/metabolismo , Estradiol/sangue , Feminino , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Testosterona/sangue , Transcriptoma/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA