Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
Expert Opin Drug Discov ; 18(7): 737-752, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37246811

RESUMO

INTRODUCTION: Protein-protein interactions (PPIs) have been often considered undruggable targets although they are attractive for the discovery of new therapeutics. The spread of artificial intelligence and machine learning complemented with experimental methods is likely to change the perspectives of protein-protein modulator research. Noteworthy, some novel low molecular weight (LMW) and short peptide modulators of PPIs are already in clinical trials for the treatment of relevant diseases. AREAS COVERED: This review focuses on the main molecular properties of protein-protein interfaces and on key concepts pertaining to the modulation of PPIs. The authors survey recently reported state-of-the-art methods dealing with the rational design of PPI modulators and highlight the role of several computer-based approaches. EXPERT OPINION: Interfering specifically with large protein interfaces is still an open challenge. The initial concerns about the unfavorable physicochemical properties of many of these modulators are nowadays less acute with several molecules lying beyond the rule of 5, orally available and successful in clinical trials. As the cost of biologics interfering with PPIs is very high, it would seem reasonable to put more effort, both in academia and the private sectors, on actively developing novel low molecular weight compounds and short peptides to perform this task.


Assuntos
Inteligência Artificial , Peptídeos , Humanos , Peso Molecular , Ligação Proteica , Peptídeos/química , Descoberta de Drogas , Proteínas/metabolismo
2.
Front Immunol ; 14: 1278630, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38250065

RESUMO

The overexpression of the immunoinhibitory receptor programmed death-1 (PD1) on T-cells is involved in immune evasion in cancer. The use of anti-PD-1/PDL-1 strategy has deeply changed the therapies of cancers and patient survival. However, their efficacy diverges greatly along with tumor type and patient populations. Thereby, novel treatments are needed to interfere with the anti-tumoral immune responses and propose an adjunct therapy. In the current study, we found that the antifungal drug Sulconazole (SCZ) inhibits PD-1 expression on activated PBMCs and T cells at the RNA and protein levels. SCZ repressed NF-κB and calcium signaling, both, involved in the induction of PD-1. Further analysis revealed cancer cells treatment with SCZ inhibited their proliferation, and migration and ability to mediate tumor growth in zebrafish embryos. SCZ found also to inhibit calcium mobilization in cancer cells. These results suggest the SCZ therapeutic potential used alone or as adjunct strategy to prevent T-cell exhaustion and promotes cancer cell malignant phenotype repression in order to improve tumor eradication.


Assuntos
Imidazóis , NF-kappa B , Neoplasias , Humanos , Animais , Cálcio , Receptor de Morte Celular Programada 1 , Peixe-Zebra , Sinalização do Cálcio , Neoplasias/tratamento farmacológico
3.
Biochem Biophys Rep ; 30: 101263, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35518197

RESUMO

The homologous proteins Gas6 and protein S (ProS1) are both natural ligands for the TAM (Tyro3, Axl, MerTK) receptor tyrosine kinases. ProS1 selectively activates Tyro3; however, the precise molecular interface of the ProS1-Tyro3 contact has not been characterised. We used a set of chimeric proteins in which each of the C-terminal laminin G-like (LG) domains of ProS1 were swapped with those of Gas6, as well as a set of ProS1 mutants with novel added glycosylations within LG1. Alongside wildtype ProS1, only the chimera containing ProS1 LG1 domain stimulated Tyro3 and Erk phosphorylation in human cancer cells, as determined by Western blot. In contrast, Gas6 and chimeras containing minimally the Gas6 LG1 domain stimulated Axl and Akt phosphorylation. We performed in silico homology modelling and molecular docking analysis to construct and evaluate structural models of both ProS1-Tyro3 and Gas6-Axl ligand-receptor interactions. These analyses revealed a contact between the ProS1 LG1 domain and the first immunoglobulin domain of Tyro3, which was similar to the Gas6-Axl interaction, and involved long-range electrostatic interactions that were further stabilised by hydrophobic and polar contacts. The mutant ProS1 proteins, which had added glycosylations within LG1 but which were all outside of the modelled contact region, all activated Tyro3 in cells with no hindrance. In conclusion, we show that the LG1 domain of ProS1 is necessary for activation of the Tyro3 receptor, involving protein-protein interaction interfaces that are homologous to those of the Gas6-Axl interaction.

4.
Oncogene ; 41(15): 2254-2264, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35217792

RESUMO

More than 70% of human NRASmut melanomas are resistant to MEK inhibitors highlighting the crucial need for efficient therapeutic strategies for these tumors. CD147, a membrane receptor, is overexpressed in most cancers including melanoma and is associated with poor prognosis. We show here that CD147i, a specific inhibitor of CD147/VEGFR-2 interaction represents a potential therapeutic strategy for NRASmut melanoma cells. It significantly inhibited the malignant properties of NRASmut melanomas ex vivo and in vivo. Importantly, NRASmut patient's-derived xenografts, which were resistant to MEKi, became sensitive when combined with CD147i leading to decreased proliferation ex vivo and tumor regression in vivo. Mechanistic studies revealed that CD147i effects were mediated through STAT3 pathway. These data bring a proof of concept on the impact of the inhibition of CD147/VEGFR-2 interaction on melanoma progression and represents a new therapeutic opportunity for NRASmut melanoma when combined with MEKi.


Assuntos
Basigina , Melanoma , Receptor 2 de Fatores de Crescimento do Endotélio Vascular , Basigina/antagonistas & inibidores , Basigina/metabolismo , Linhagem Celular Tumoral , GTP Fosfo-Hidrolases/genética , GTP Fosfo-Hidrolases/metabolismo , Humanos , Melanoma/tratamento farmacológico , Melanoma/genética , Melanoma/metabolismo , Proteínas de Membrana/genética , Mutação , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas B-raf/genética , Proteínas Proto-Oncogênicas B-raf/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/antagonistas & inibidores , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/genética , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo
5.
Drug Discov Today ; 27(5): 1448-1456, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35085784

RESUMO

The endothelial vascular permeability barrier has an important role throughout the body's extensive vasculature, and its disruption leads to vascular hyperpermeability (leakage), which is associated with numerous medical conditions. In the lung, vascular hyperpermeability can lead to pulmonary edema and acute respiratory distress syndrome (ARDS), the most severe and deadly complication of viral and bacterial infections, trauma and radiation exposure. There is currently no pharmacological treatment for ARDS with the only approved options being focused on supportive care. The development of effective treatments for ARDS has a potential to turn infectious diseases such as bacterial and viral pneumonia (including COVID-19) into manageable conditions, saving lives and providing a new tool to combat future epidemics. Strategies that aim to protect and augment the vascular endothelial barrier are important avenues to consider as potential treatments for ARDS and other conditions underlined by vascular hyperpermeability. We propose the activation of the MAPKAPK2 (MK2) kinase pathway as a new approach to augment the endothelial barrier and prevent or reverse ARDS and other conditions characterized by vascular barrier dysfunction.


Assuntos
Tratamento Farmacológico da COVID-19 , Síndrome do Desconforto Respiratório , Permeabilidade Capilar , Humanos , Pulmão/metabolismo , Síndrome do Desconforto Respiratório/tratamento farmacológico , Transdução de Sinais
6.
Molecules ; 26(21)2021 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-34770768

RESUMO

The aim of this study was to investigate the chemical space and interactions of natural compounds with sulfotransferases (SULTs) using ligand- and structure-based in silico methods. An in-house library of natural ligands (hormones, neurotransmitters, plant-derived compounds and their metabolites) reported to interact with SULTs was created. Their chemical structures and properties were compared to those of compounds of non-natural (synthetic) origin, known to interact with SULTs. The natural ligands interacting with SULTs were further compared to other natural products for which interactions with SULTs were not known. Various descriptors of the molecular structures were calculated and analyzed. Statistical methods (ANOVA, PCA, and clustering) were used to explore the chemical space of the studied compounds. Similarity search between the compounds in the different groups was performed with the ROCS software. The interactions with SULTs were additionally analyzed by docking into different experimental and modeled conformations of SULT1A1. Natural products with potentially strong interactions with SULTs were outlined. Our results contribute to a better understanding of chemical space and interactions of natural compounds with SULT enzymes and help to outline new potential ligands of these enzymes.


Assuntos
Produtos Biológicos/química , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Sulfotransferases/química , Produtos Biológicos/farmacologia , Análise por Conglomerados , Flavonoides , Ligantes , Estrutura Molecular , Polifenóis , Relação Estrutura-Atividade , Sulfotransferases/metabolismo
7.
J Invest Dermatol ; 141(9): 2261-2271.e5, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33745910

RESUMO

Sézary syndrome is an aggressive form of cutaneous T-cell lymphoma characterized by the presence of a malignant CD4+ T-cell clone in both blood and skin. Its pathophysiology is still poorly understood, and the development of targeted therapies is hampered by the absence of specific target proteins. AAC-11 plays important roles in cancer cell progression and survival and thus has been considered as an anticancer therapeutic target. In this study, we show that a peptide called RT39, comprising a portion of AAC-11‒binding site to its protein partners coupled to the penetratin sequence, induces the specific elimination of the malignant T-cell clone both ex vivo on the circulating cells of patients with Sézary syndrome and in vivo in a subcutaneous xenograft mouse model. RT39 acts by direct binding to PAK1 that is overexpressed, located in the plasma membrane, and constitutively activated in Sézary cells, resulting in their selective depletion by membranolysis. Along with the absence of toxicity, our preclinical efficacy evidence suggests that RT39 might represent a promising alternative therapeutic tool for Sézary syndrome because it spares the nonmalignant immune cells and, contrary to antibody-based immunotherapies, does not require the mobilization of the cellular immunity that shows heavy deficiencies at advanced stages of the disease.


Assuntos
Proteínas Reguladoras de Apoptose/metabolismo , Linfócitos T CD4-Positivos/imunologia , Proteínas Nucleares/metabolismo , Peptídeos/metabolismo , Síndrome de Sézary/terapia , Neoplasias Cutâneas/terapia , Quinases Ativadas por p21/metabolismo , Animais , Proteínas Reguladoras de Apoptose/genética , Carcinogênese , Peptídeos Penetradores de Células/metabolismo , Células Clonais , Regulação Neoplásica da Expressão Gênica , Xenoenxertos , Humanos , Camundongos , Proteínas Nucleares/genética , Peptídeos/genética , Ligação Proteica , Quinases Ativadas por p21/genética
8.
J Chem Inf Model ; 60(8): 3910-3934, 2020 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-32786511

RESUMO

Protein-protein interactions (PPIs) are attractive targets for drug design because of their essential role in numerous cellular processes and disease pathways. However, in general, PPIs display exposed binding pockets at the interface, and as such, have been largely unexploited for therapeutic interventions with low-molecular weight compounds. Here, we used docking and various rescoring strategies in an attempt to recover PPI inhibitors from a set of active and inactive molecules for 11 targets collected in ChEMBL and PubChem. Our focus is on the screening power of the various developed protocols and on using fast approaches so as to be able to apply such a strategy to the screening of ultralarge libraries in the future. First, we docked compounds into each target using the fast "pscreen" mode of the structure-based virtual screening (VS) package Surflex. Subsequently, the docking poses were postprocessed to derive a set of 3D topological descriptors: (i) shape similarity and (ii) interaction fingerprint similarity with a co-crystallized inhibitor, (iii) solvent-accessible surface area, and (iv) extent of deviation from the geometric center of a reference inhibitor. The derivatized descriptors, together with descriptor-scaled scoring functions, were utilized to investigate possible impacts on VS performance metrics. Moreover, four standalone scoring functions, RF-Score-VS (machine-learning), DLIGAND2 (knowledge-based), Vinardo (empirical), and X-SCORE (empirical), were employed to rescore the PPI compounds. Collectively, the results indicate that the topological scoring algorithms could be valuable both at a global level, with up to 79% increase in areas under the receiver operating characteristic curve for some targets, and in early stages, with up to a 4-fold increase in enrichment factors at 1% of the screened collections. Outstandingly, DLIGAND2 emerged as the best scoring function on this data set, outperforming all rescoring techniques in terms of VS metrics. The described methodology could help in the rational design of small-molecule PPI inhibitors and has direct applications in many therapeutic areas, including cancer, CNS, and infectious diseases such as COVID-19.


Assuntos
Desenho de Fármacos , Descoberta de Drogas , Mapas de Interação de Proteínas/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/farmacologia , Algoritmos , Betacoronavirus/efeitos dos fármacos , Betacoronavirus/metabolismo , COVID-19 , Infecções por Coronavirus/tratamento farmacológico , Infecções por Coronavirus/metabolismo , Bases de Dados de Proteínas , Humanos , Ligantes , Aprendizado de Máquina , Simulação de Acoplamento Molecular , Terapia de Alvo Molecular , Pandemias , Pneumonia Viral/tratamento farmacológico , Pneumonia Viral/metabolismo , Proteínas/química , Proteínas/metabolismo , SARS-CoV-2 , Bibliotecas de Moléculas Pequenas/química
9.
JCI Insight ; 5(14)2020 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-32516140

RESUMO

Apelin is a well-established mediator of survival and mitogenic signaling through the apelin receptor (Aplnr) and has been implicated in various cancers; however, little is known regarding Elabela (ELA/APELA) signaling, also mediated by Aplnr, and its role and the role of the conversion of its precursor proELA into mature ELA in cancer are unknown. Here, we identified a function of mTORC1 signaling as an essential mediator of ELA that repressed kidney tumor cell growth, migration, and survival. Moreover, sunitinib and ELA showed a synergistic effect in repressing tumor growth and angiogenesis in mice. The use of site-directed mutagenesis and pharmacological experiments provided evidence that the alteration of the cleavage site of proELA by furin induced improved ELA antitumorigenic activity. Finally, a cohort of tumors and public data sets revealed that ELA was only repressed in the main human kidney cancer subtypes, namely clear cell, papillary, and chromophobe renal cell carcinoma. Aplnr was expressed by various kidney cells, whereas ELA was generally expressed by epithelial cells. Collectively, these results showed the tumor-suppressive role of mTORC1 signaling mediated by ELA and established the potential use of ELA or derivatives in kidney cancer treatment.


Assuntos
Receptores de Apelina/genética , Apelina/genética , Carcinoma de Células Renais/genética , Hormônios Peptídicos/genética , Animais , Apelina/metabolismo , Cálcio/metabolismo , Carcinoma de Células Renais/tratamento farmacológico , Carcinoma de Células Renais/patologia , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Furina/farmacologia , Regulação Neoplásica da Expressão Gênica , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/genética , Rim/efeitos dos fármacos , Rim/patologia , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Camundongos , Transdução de Sinais/efeitos dos fármacos , Sunitinibe/farmacologia , Proteínas Supressoras de Tumor/genética
10.
Mol Genet Genomic Med ; 8(4): e1166, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32096919

RESUMO

BACKGROUND: Different types of in silico approaches can be used to predict the phenotypic consequence of missense variants. Such algorithms are often categorized as sequence based or structure based, when they necessitate 3D structural information. In addition, many other in silico tools, not dedicated to the analysis of variants, can be used to gain additional insights about the possible mechanisms at play. METHODS: Here we applied different computational approaches to a set of 20 known missense variants present on different proteins (CYP, complement factor B, antithrombin and blood coagulation factor VIII). The tools that were used include fast computational approaches and web servers such as PolyPhen-2, PopMusic, DUET, MaestroWeb, SAAFEC, Missense3D, VarSite, FlexPred, PredyFlexy, Clustal Omega, meta-PPISP, FTMap, ClusPro, pyDock, PPM, RING, Cytoscape, and ChannelsDB. RESULTS: We observe some conflicting results among the methods but, most of the time, the combination of several engines helped to clarify the potential impacts of the amino acid substitutions. CONCLUSION: Combining different computational approaches including some that were not developed to investigate missense variants help to predict the possible impact of the amino acid substitutions. Yet, when the modified residues are involved in a salt-bridge, the tools tend to fail, even when the analysis is performed in 3D. Thus, interactive structural analysis with molecular graphics packages such as Chimera or PyMol or others are still needed to clarify automatic prediction.


Assuntos
Simulação de Dinâmica Molecular/normas , Mutação de Sentido Incorreto , Análise de Sequência de Proteína/métodos , Software/normas , Fatores de Coagulação Sanguínea/química , Fatores de Coagulação Sanguínea/genética , Sistema Enzimático do Citocromo P-450/química , Sistema Enzimático do Citocromo P-450/genética , Humanos , Análise de Sequência de Proteína/normas
11.
J Am Soc Nephrol ; 31(4): 829-840, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32034108

RESUMO

BACKGROUND: The pathophysiology of the leading cause of pediatric acute nephritis, acute postinfectious GN, including mechanisms of the pathognomonic transient complement activation, remains uncertain. It shares clinicopathologic features with C3 glomerulopathy, a complement-mediated glomerulopathy that, unlike acute postinfectious GN, has a poor prognosis. METHODS: This retrospective study investigated mechanisms of complement activation in 34 children with acute postinfectious GN and low C3 level at onset. We screened a panel of anticomplement protein autoantibodies, carried out related functional characterization, and compared results with those of 60 children from the National French Registry who had C3 glomerulopathy and persistent hypocomplementemia. RESULTS: All children with acute postinfectious GN had activation of the alternative pathway of the complement system. At onset, autoantibodies targeting factor B (a component of the alternative pathway C3 convertase) were found in a significantly higher proportion of children with the disorder versus children with hypocomplementemic C3 glomerulopathy (31 of 34 [91%] versus 4 of 28 [14%], respectively). In acute postinfectious GN, anti-factor B autoantibodies were transient and correlated with plasma C3 and soluble C5b-9 levels. We demonstrated that anti-factor B antibodies enhance alternative pathway convertase activity in vitro, confirming their pathogenic effect. We also identified crucial antibody binding sites on factor B, including one correlated to disease severity. CONCLUSIONS: These findings elucidate the pathophysiologic mechanisms underlying acute postinfectious GN by identifying anti-factor B autoantibodies as contributing factors in alternative complement pathway activation. At onset of a nephritic syndrome with low C3 level, screening for anti-factor B antibodies might help guide indications for kidney biopsy to avoid misdiagnosed chronic glomerulopathy, such as C3 glomerulopathy, and to help determine therapy.


Assuntos
Autoanticorpos/sangue , Ativação do Complemento/fisiologia , Complemento C3/metabolismo , Fator B do Complemento/imunologia , Glomerulonefrite/sangue , Glomerulonefrite/diagnóstico , Criança , Pré-Escolar , Fator Nefrítico do Complemento 3/metabolismo , Feminino , França , Humanos , Masculino , Estudos Retrospectivos
12.
Sci Rep ; 9(1): 15061, 2019 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-31636293

RESUMO

L-type Amino acid Transporter 1 (LAT1) plays a significant role in the growth and propagation of cancer cells by facilitating the cross-membrane transport of essential nutrients, and is an attractive drug target. Several halogen-containing L-phenylalanine-based ligands display high affinity and high selectivity for LAT1; nonetheless, their molecular mechanism of binding remains unclear. In this study, a combined in silico strategy consisting of homology modeling, molecular docking, and Quantum Mechanics-Molecular Mechanics (QM-MM) simulation was applied to elucidate the molecular basis of ligand binding in LAT1. First, a homology model of LAT1 based on the atomic structure of a prokaryotic homolog was constructed. Docking studies using a set of halogenated ligands allowed for deriving a binding hypothesis. Selected docking poses were subjected to QM-MM calculations to investigate the halogen interactions. Collectively, the results highlight the dual nature of the ligand-protein binding mode characterized by backbone hydrogen bond interactions of the amino acid moiety of the ligands and residues I63, S66, G67, F252, G255, as well as hydrophobic interactions of the ligand's side chains with residues I139, I140, F252, G255, F402, W405. QM-MM optimizations indicated that the electrostatic interactions involving halogens contribute to the binding free energy. Importantly, our results are in good agreement with the recently unraveled cryo-Electron Microscopy structures of LAT1.


Assuntos
Halogenação , Transportador 1 de Aminoácidos Neutros Grandes/química , Transportador 1 de Aminoácidos Neutros Grandes/metabolismo , Simulação de Acoplamento Molecular , Sítios de Ligação , Humanos , Ligação de Hidrogênio , Ligantes , Fenilalanina/metabolismo , Homologia Estrutural de Proteína , Relação Estrutura-Atividade
13.
Int J Mol Sci ; 20(18)2019 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-31546814

RESUMO

Chemical biology and drug discovery are complex and costly processes. In silico screening approaches play a key role in the identification and optimization of original bioactive molecules and increase the performance of modern chemical biology and drug discovery endeavors. Here, we describe a free web-based protocol dedicated to small-molecule virtual screening that includes three major steps: ADME-Tox filtering (via the web service FAF-Drugs4), docking-based virtual screening (via the web service MTiOpenScreen), and molecular mechanics optimization (via the web service AMMOS2 [Automatic Molecular Mechanics Optimization for in silico Screening]). The online tools FAF-Drugs4, MTiOpenScreen, and AMMOS2 are implemented in the freely accessible RPBS (Ressource Parisienne en Bioinformatique Structurale) platform. The proposed protocol allows users to screen thousands of small molecules and to download the top 1500 docked molecules that can be further processed online. Users can then decide to purchase a small list of compounds for in vitro validation. To demonstrate the potential of this online-based protocol, we performed virtual screening experiments of 4574 approved drugs against three cancer targets. The results were analyzed in the light of published drugs that have already been repositioned on these targets. We show that our protocol is able to identify active drugs within the top-ranked compounds. The web-based protocol is user-friendly and can successfully guide the identification of new promising molecules for chemical biology and drug discovery purposes.


Assuntos
Bases de Dados de Compostos Químicos , Internet , Simulação de Acoplamento Molecular , Software , Animais , Humanos
14.
Oncotarget ; 9(64): 32346-32361, 2018 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-30190791

RESUMO

Drug discovery is a long and difficult process that benefits from the integration of virtual screening methods in experimental screening campaigns such as to generate testable hypotheses, accelerate and/or reduce the cost of drug development. Current drug attrition rate is still a major issue in all therapeutic areas and especially in the field of cancer. Drug repositioning as well as the screening of natural compounds constitute promising approaches to accelerate and improve the success rate of drug discovery. We developed three compounds libraries of purchasable compounds: Drugs-lib, FOOD-lib and NP-lib that contain approved drugs, food constituents and natural products, respectively, that are optimized for structure-based virtual screening studies. The three compounds libraries are implemented in the MTiOpenScreen web server that allows users to perform structure-based virtual screening computations on their selected protein targets. The server outputs a list of 1,500 molecules with predicted binding scores that can then be processed further by the users and purchased for experimental validation. To illustrate the potential of our service for drug repositioning endeavours, we selected five recently published drugs that have been repositioned in vitro and/or in vivo on cancer targets. For each drug, we used the MTiOpenScreen service to screen the Drugs-lib collection against the corresponding anti-cancer target and we show that our protocol is able to rank these drugs within the top ranked compounds. This web server should assist the discovery of promising molecules that could benefit patients, with faster development times, and reduced costs and risk.

15.
Cancer Res ; 78(6): 1404-1417, 2018 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-29330143

RESUMO

Drug resistance and metastatic relapse remain a top challenge in breast cancer treatment. In this study, we present preclinical evidence for a strategy to eradicate advanced breast cancers by targeting the BCL-2 homolog Nrh/BCL2L10, which we discovered to be overexpressed in >45% of a large cohort of breast invasive carcinomas. Nrh expression in these tumors correlated with reduced metastasis-free survival, and we determined it to be an independent marker of poor prognosis. Nrh protein localized to the endoplasmic reticulum. Mechanistic investigations showed that Nrh made BH4 domain-dependent interactions with the ligand-binding domain of the inositol-1,4,5-triphosphate receptor (IP3R), a type 1/3 Ca2+ channel, allowing Nrh to negatively regulate ER-Ca2+ release and to mediate antiapoptosis. Notably, disrupting Nrh/IP3R complexes by BH4 mimetic peptides was sufficient to inhibit the growth of breast cancer cells in vitro and in vivo Taken together, our results highlighted Nrh as a novel prognostic marker and a candidate therapeutic target for late stage breast cancers that may be addicted to Nrh.Significance: These findings offer a comprehensive molecular model for the activity of Nrh/BCL2L10, a little studied antiapoptotic molecule, prognostic marker, and candidate drug target in breast cancer. Cancer Res; 78(6); 1404-17. ©2018 AACR.


Assuntos
Apoptose/efeitos dos fármacos , Neoplasias da Mama/tratamento farmacológico , Retículo Endoplasmático/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Animais , Apoptose/fisiologia , Sítios de Ligação , Biomarcadores Tumorais/análise , Biomarcadores Tumorais/metabolismo , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Cálcio/metabolismo , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos , Retículo Endoplasmático/efeitos dos fármacos , Feminino , Humanos , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Camundongos SCID , Terapia de Alvo Molecular/métodos , Fragmentos de Peptídeos/metabolismo , Peptídeos/farmacologia , Prognóstico , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/genética , Ensaios Antitumorais Modelo de Xenoenxerto
16.
Oncotarget ; 8(6): 10437-10449, 2017 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-28060729

RESUMO

A structure-based virtual screening of over 400,000 small molecules against the constitutive proteasome activity followed by in vitro assays led to the discovery of a family of proteasome inhibitors with a sulfonyl piperazine scaffold. Some members of this family of small non-peptidic inhibitors were found to act selectively on the ß2 trypsin-like catalytic site with a preference for the immunoproteasome ß2i over the constitutive proteasome ß2c, while some act on the ß5 site and post-acid site ß1 of both, the immunoproteasome and the constitutive proteasome. Anti-proliferative and anti-invasive effects on tumor cells were investigated and observed for two compounds. We report novel chemical inhibitors able to interfere with the three types of active centers of both, the immuno- and constitutive proteasomes. Identifying and analyzing a novel scaffold with decorations able to shift the binders' active site selectivity is essential to design a future generation of proteasome inhibitors able to distinguish the immunoproteasome from the constitutive proteasome.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Neoplasias do Colo/tratamento farmacológico , Desenho de Fármacos , Piperazinas/farmacologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Inibidores de Proteassoma/farmacologia , Animais , Sítios de Ligação , Neoplasias da Mama/enzimologia , Neoplasias da Mama/imunologia , Neoplasias da Mama/patologia , Domínio Catalítico , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Neoplasias do Colo/enzimologia , Neoplasias do Colo/imunologia , Neoplasias do Colo/patologia , Simulação por Computador , Desenho Assistido por Computador , Relação Dose-Resposta a Droga , Feminino , Humanos , Camundongos , Modelos Moleculares , Estrutura Molecular , Piperazinas/química , Piperazinas/metabolismo , Complexo de Endopeptidases do Proteassoma/química , Inibidores de Proteassoma/química , Inibidores de Proteassoma/imunologia , Inibidores de Proteassoma/metabolismo , Ligação Proteica , Subunidades Proteicas , Relação Estrutura-Atividade
17.
Trends Pharmacol Sci ; 37(8): 641-659, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27372370

RESUMO

Discoidin (DS) domains are found in eukaryotic and prokaryotic extracellular and transmembrane multidomain proteins. These small domains play different functional roles and can interact with phospholipids, glycans, and proteins, including collagens. DS domain-containing proteins are often involved in cellular adhesion, migration, proliferation, and matrix-remodeling events, while some play a major role in blood coagulation. Mutations in DS domains have been associated with various disease conditions. This review provides an update on the structure, function, and modulation of the DS domains, with a special emphasis on two circulating blood coagulation cofactors, factor V and factor VIII, and the transmembrane neuropilin receptors that have been targeted for inhibition by biologics and small chemical compounds.


Assuntos
Domínio Discoidina/fisiologia , Fator VIII/fisiologia , Fator V/fisiologia , Neuropilinas/fisiologia , Coagulação Sanguínea/efeitos dos fármacos , Coagulação Sanguínea/fisiologia , Fator V/antagonistas & inibidores , Fator V/química , Fator VIII/antagonistas & inibidores , Fator VIII/química , Humanos , Modelos Moleculares , Terapia de Alvo Molecular , Neuropilinas/antagonistas & inibidores , Neuropilinas/química
18.
Cancer Res ; 76(18): 5479-90, 2016 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-27406828

RESUMO

AAC-11 is an antiapoptotic protein that is upregulated in most cancer cells. Increased expression of AAC-11 confers a survival advantage when cancer cells are challenged with various stresses and contributes to tumor invasion and metastases, whereas its deregulation reduces resistance to chemotherapeutic drugs. The antiapoptotic effect of AAC-11 may be clinically relevant as its expression correlates with poor prognosis in several human cancers. Thus, inactivation of AAC-11 might constitute an attractive approach for developing cancer therapeutics. We have developed an AAC-11-derived cell-penetrating peptide, herein named RT53, mimicking in part the heptad leucine repeat region of AAC-11, which functions as a protein-protein interaction module, and that can prevent AAC-11 antiapoptotic properties. In this study, we investigated the anticancer effects of RT53. Our results indicate that RT53 selectively kills cancer cells while sparing normal cells. RT53 selectively inserts into the membranes of cancer cells, where it adopts a punctate distribution and induces membranolysis and release of danger-associated molecular pattern molecules. Systemic administration of RT53 inhibited the growth of preexisting BRAF wild-type and V600E mutant melanoma xenograft tumors through induction of apoptosis and necrosis. Toxicological studies revealed that repetitive injections of RT53 did not produce significant toxicity. Finally, RT53-killed B16F10 cells induced tumor growth inhibition in immunocompetent mice following a rechallenge with live cancer cells of the same type. Collectively, our data demonstrate that RT53 possesses tumor-inhibitory activity with no toxicity in mice, suggesting its potential as a therapeutic agent for the treatment of melanoma and probably other cancers. Cancer Res; 76(18); 5479-90. ©2016 AACR.


Assuntos
Proteínas Reguladoras de Apoptose/antagonistas & inibidores , Apoptose/efeitos dos fármacos , Peptídeos Penetradores de Células/farmacologia , Melanoma Experimental/tratamento farmacológico , Proteínas Nucleares/antagonistas & inibidores , Animais , Linhagem Celular Tumoral , Humanos , Imunoprecipitação , Marcação In Situ das Extremidades Cortadas , Melanoma Experimental/patologia , Camundongos , Camundongos Nus , Ensaios Antitumorais Modelo de Xenoenxerto
19.
Oncotarget ; 6(34): 36269-77, 2015 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-26474455

RESUMO

Little is known about inherited factors associated with the risk of developing chronic myelogenous leukemia (CML). We used a dedicated DNA chip containing 16 561 single nucleotide polymorphisms (SNPs) covering 1 916 candidate genes to analyze 437 CML patients and 1 144 healthy control individuals. Single SNP association analysis identified 139 SNPs that passed multiple comparisons (1% false discovery rate). The HDAC9, AVEN, SEMA3C, IKBKB, GSTA3, RIPK1 and FGF2 genes were each represented by three SNPs, the PSM family by four SNPs and the SLC15A1 gene by six. Haplotype analysis showed that certain combinations of rare alleles of these genes increased the risk of developing CML by more than two or three-fold. A classification tree model identified five SNPs belonging to the genes PSMB10, TNFRSF10D, PSMB2, PPARD and CYP26B1, which were associated with CML predisposition. A CML-risk-allele score was created using these five SNPs. This score was accurate for discriminating CML status (AUC: 0.61, 95%CI: 0.58-0.64). Interestingly, the score was associated with age at diagnosis and the average number of risk alleles was significantly higher in younger patients. The risk-allele score showed the same distribution in the general population (HapMap CEU samples) as in our control individuals and was associated with differential gene expression patterns of two genes (VAPA and TDRKH). In conclusion, we describe haplotypes and a genetic score that are significantly associated with a predisposition to develop CML. The SNPs identified will also serve to drive fundamental research on the putative role of these genes in CML development.


Assuntos
Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , Feminino , Predisposição Genética para Doença , Humanos , Masculino , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único
20.
Mol Cancer Res ; 13(7): 1073-82, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25934692

RESUMO

UNLABELLED: In addition to its cytosolic function, γ-tubulin is a chromatin-associated protein. Reduced levels of nuclear γ-tubulin increase the activity of E2 promoter-binding factors (E2F) and raise the levels of retinoblastoma (RB1) tumor suppressor protein. In tumor cells lacking RB1 expression, decreased γ-tubulin levels induce cell death. Consequently, impairment of the nuclear activity of γ-tubulin has been suggested as a strategy for targeted chemotherapy of RB1-deficient tumors; thus, tubulin inhibitors were tested to identify compounds that interfere with γ-tubulin. Interestingly, citral increased E2F activity but impaired microtubule dynamics while citral analogues, such citral dimethyl acetal (CDA), increased E2F activity without affecting microtubules. The cytotoxic effect of CDA on tumor cells was attenuated by increased expression of either RB1 or γ-tubulin, and increased by reduced levels of either RB1 or γ-tubulin. Mechanistic study, in silico and in vitro, demonstrated that CDA prevents GTP binding to γ-tubulin and suggested that the FDA-approved drug dimethyl fumarate is also a γ-tubulin inhibitor. Finally, in vivo growth of xenograft tumors carrying defects in the RB1 signaling pathway were inhibited by CDA treatment. These results demonstrate that inhibition of γ-tubulin has the potential to specifically target tumor cells and may aid in the design of safer and more efficient chemotherapeutic regimes. IMPLICATIONS: The in vivo antitumorigenic activity of γ-tubulin inhibitors paves the way for the development of a novel broad range targeted anticancer therapy that causes fewer side effects.


Assuntos
Acetais/farmacologia , Antineoplásicos/farmacologia , Microtúbulos/efeitos dos fármacos , Monoterpenos/farmacologia , Proteínas Nucleares/metabolismo , Moduladores de Tubulina/farmacologia , Tubulina (Proteína)/metabolismo , Monoterpenos Acíclicos , Animais , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Cisteína/metabolismo , Fumarato de Dimetilo/farmacologia , Fatores de Transcrição E2F/metabolismo , Guanosina Trifosfato/metabolismo , Xenoenxertos , Camundongos , Monoterpenos/química , Proteína do Retinoblastoma/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA