Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
EBioMedicine ; 76: 103818, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35078012

RESUMO

BACKGROUND: The emergence of new SARS-CoV-2 variants of concern B.1.1.7 (Alpha), B.1.351 (Beta), P.1 (Gamma) and B.1.617.2 (Delta) that harbor mutations in the viral S protein raised concern about activity of current vaccines and therapeutic antibodies. Independent studies have shown that mutant variants are partially or completely resistant against some of the therapeutic antibodies authorized for emergency use. METHODS: We employed hybridoma technology, ELISA-based and cell-based S-ACE2 interaction assays combined with authentic virus neutralization assays to develop second-generation antibodies, which were specifically selected for their ability to neutralize the new variants of SARS-CoV-2. FINDINGS: AX290 and AX677, two monoclonal antibodies with non-overlapping epitopes, exhibit subnanomolar or nanomolar affinities to the receptor binding domain of the viral Spike protein carrying amino acid substitutions N501Y, N439K, E484K, K417N, and a combination N501Y/E484K/K417N found in the circulating virus variants. The antibodies showed excellent neutralization of an authentic SARS-CoV-2 virus representing strains circulating in Europe in spring 2020 and also the variants of concern B.1.1.7 (Alpha), B.1.351 (Beta) and B.1.617.2 (Delta). In addition, AX677 is able to bind Omicron Spike protein just like the wild type Spike. The combination of the two antibodies prevented the appearance of escape mutations of the authentic SARS-CoV-2 virus. Prophylactic administration of AX290 and AX677, either individually or in combination, effectively reduced viral burden and inflammation in the lungs, and prevented disease in a mouse model of SARS-CoV-2 infection. INTERPRETATION: The virus-neutralizing properties were fully reproduced in chimeric mouse-human versions of the antibodies, which may represent a promising tool for COVID-19 therapy. FUNDING: The study was funded by AXON Neuroscience SE and AXON COVIDAX a.s.


Assuntos
Anticorpos Monoclonais/imunologia , Antineoplásicos Imunológicos/imunologia , Epitopos Imunodominantes/imunologia , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Enzima de Conversão de Angiotensina 2/química , Enzima de Conversão de Angiotensina 2/genética , Enzima de Conversão de Angiotensina 2/metabolismo , Animais , Anticorpos Monoclonais/uso terapêutico , Deriva e Deslocamento Antigênicos , Antineoplásicos Imunológicos/uso terapêutico , COVID-19/virologia , Modelos Animais de Doenças , Humanos , Cinética , Pulmão/patologia , Camundongos , Mutação , Testes de Neutralização , Ligação Proteica , SARS-CoV-2/genética , SARS-CoV-2/isolamento & purificação , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/metabolismo , Tratamento Farmacológico da COVID-19
2.
Curr Genet ; 65(2): 539-560, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30456648

RESUMO

The yeast Magnusiomyces capitatus is an opportunistic human pathogen causing rare yet severe infections, especially in patients with hematological malignancies. Here, we report the 20.2 megabase genome sequence of an environmental strain of this species as well as the genome sequences of eight additional isolates from human and animal sources providing an insight into intraspecies variation. The distribution of single-nucleotide variants is indicative of genetic recombination events, supporting evidence for sexual reproduction in this heterothallic yeast. Using RNAseq-aided annotation, we identified genes for 6518 proteins including several expanded families such as kexin proteases and Hsp70 molecular chaperones. Several of these families are potentially associated with the ability of M. capitatus to infect and colonize humans. For the purpose of comparative analysis, we also determined the genome sequence of a closely related yeast, Magnusiomyces ingens. The genome sequences of M. capitatus and M. ingens exhibit many distinct features and represent a basis for further comparative and functional studies.


Assuntos
Genoma Fúngico , Genômica , Micoses/microbiologia , Infecções Oportunistas/microbiologia , Saccharomycetales/genética , Antifúngicos/farmacologia , Biologia Computacional/métodos , Genômica/métodos , Humanos , Testes de Sensibilidade Microbiana , Anotação de Sequência Molecular , Família Multigênica , Fenótipo , Filogenia , Recombinação Genética , Saccharomycetales/classificação , Saccharomycetales/crescimento & desenvolvimento , Saccharomycetales/patogenicidade , Fatores de Virulência
3.
Nat Commun ; 7: 11693, 2016 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-27243207

RESUMO

Analysing population genomic data from killer whale ecotypes, which we estimate have globally radiated within less than 250,000 years, we show that genetic structuring including the segregation of potentially functional alleles is associated with socially inherited ecological niche. Reconstruction of ancestral demographic history revealed bottlenecks during founder events, likely promoting ecological divergence and genetic drift resulting in a wide range of genome-wide differentiation between pairs of allopatric and sympatric ecotypes. Functional enrichment analyses provided evidence for regional genomic divergence associated with habitat, dietary preferences and post-zygotic reproductive isolation. Our findings are consistent with expansion of small founder groups into novel niches by an initial plastic behavioural response, perpetuated by social learning imposing an altered natural selection regime. The study constitutes an important step towards an understanding of the complex interaction between demographic history, culture, ecological adaptation and evolution at the genomic level.


Assuntos
Ecótipo , Evolução Molecular , Especiação Genética , Seleção Genética/genética , Orca/fisiologia , Adaptação Biológica/genética , Animais , Biópsia , Feminino , Interação Gene-Ambiente , Deriva Genética , Variação Genética/genética , Genética Populacional/métodos , Genoma , Genômica/métodos , Masculino , Filogenia , Isolamento Reprodutivo , Pele , Simpatria/genética
4.
Nat Genet ; 45(10): 1168-75, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24013640

RESUMO

Cystic echinococcosis (hydatid disease), caused by the tapeworm E. granulosus, is responsible for considerable human morbidity and mortality. This cosmopolitan disease is difficult to diagnose, treat and control. We present a draft genomic sequence for the worm comprising 151.6 Mb encoding 11,325 genes. Comparisons with the genome sequences from other taxa show that E. granulosus has acquired a spectrum of genes, including the EgAgB family, whose products are secreted by the parasite to interact and redirect host immune responses. We also find that genes in bile salt pathways may control the bidirectional development of E. granulosus, and sequence differences in the calcium channel subunit EgCavß1 may be associated with praziquantel sensitivity. Our study offers insights into host interaction, nutrient acquisition, strobilization, reproduction, immune evasion and maturation in the parasite and provides a platform to facilitate the development of new, effective treatments and interventions for echinococcosis control.


Assuntos
Echinococcus granulosus/genética , Genoma Helmíntico , Sequência de Aminoácidos , Animais , Echinococcus granulosus/imunologia , Echinococcus granulosus/fisiologia , Evasão da Resposta Imune , Dados de Sequência Molecular , Filogenia , Reprodução , Homologia de Sequência de Aminoácidos
5.
J Comput Biol ; 17(9): 1267-79, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20874408

RESUMO

Clusters of genes that have evolved by repeated segmental duplication present difficult challenges throughout genomic analysis, from sequence assembly to functional analysis. These clusters are one of the major sources of evolutionary innovation, and they are linked to multiple diseases, including HIV and a variety of cancers. Understanding their evolutionary histories is a key to the application of comparative genomics methods in these regions of the genome. We propose a probabilistic model of gene cluster evolution on a phylogeny, and an MCMC algorithm for reconstruction of duplication histories from genomic sequences in multiple species. Several projects are underway to obtain high quality BAC-based assemblies of duplicated clusters in multiple species, and we anticipate use of our methods in their analysis.


Assuntos
Algoritmos , Evolução Molecular , Genômica/métodos , Modelos Genéticos , Família Multigênica , Filogenia , Animais , Sequência de Bases , Duplicação Gênica , Especiação Genética , Genoma , Humanos
6.
FEBS Lett ; 584(3): 469-76, 2010 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-20026333

RESUMO

Apoptosis is a form of programmed cell death crucial for development, homeostasis, immunity, spermatogenesis, and prevention of cancer. Positive selection acting on mammalian apoptosis related genes targets protein interfaces that interact with pathogens and also elements of signaling complexes. Selection appears primarily to be driven by the immune/defense related function of these genes. Moreover, competitive interactions could be driving positive selection among sperm cells, as well as the need for protection against female anti-sperm immune responses. Trade-offs in fitness are expected out of these selective pressures, which could explain the involvement of these genes in various diseases, including cancer.


Assuntos
Apoptose/genética , Seleção Genética , Animais , Evolução Molecular , Feminino , Humanos , Masculino , Modelos Biológicos , Proteínas/genética , Transdução de Sinais/genética , Transdução de Sinais/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA