Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 4025, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38740804

RESUMO

Intracellular membranes composing organelles of eukaryotes include membrane proteins playing crucial roles in physiological functions. However, a comprehensive understanding of the cellular responses triggered by intracellular membrane-focused oxidative stress remains elusive. Herein, we report an amphiphilic photocatalyst localised in intracellular membranes to damage membrane proteins oxidatively, resulting in non-canonical pyroptosis. Our developed photocatalysis generates hydroxyl radicals and hydrogen peroxides via water oxidation, which is accelerated under hypoxia. Single-molecule magnetic tweezers reveal that photocatalysis-induced oxidation markedly destabilised membrane protein folding. In cell environment, label-free quantification reveals that oxidative damage occurs primarily in membrane proteins related to protein quality control, thereby aggravating mitochondrial and endoplasmic reticulum stress and inducing lytic cell death. Notably, the photocatalysis activates non-canonical inflammasome caspases, resulting in gasdermin D cleavage to its pore-forming fragment and subsequent pyroptosis. These findings suggest that the oxidation of intracellular membrane proteins triggers non-canonical pyroptosis.


Assuntos
Inflamassomos , Proteínas de Membrana , Oxirredução , Piroptose , Humanos , Inflamassomos/metabolismo , Proteínas de Membrana/metabolismo , Estresse Oxidativo , Catálise , Estresse do Retículo Endoplasmático , Peróxido de Hidrogênio/metabolismo , Proteínas de Ligação a Fosfato/metabolismo , Radical Hidroxila/metabolismo , Mitocôndrias/metabolismo , Membranas Intracelulares/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Camundongos , Animais , Processos Fotoquímicos , Dobramento de Proteína , Caspases/metabolismo , Gasderminas
2.
Immunity ; 57(3): 429-445, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38479360

RESUMO

Diverse inflammatory conditions, from infections to autoimmune disease, are often associated with cellular damage and death. Apoptotic cell death has evolved to minimize its inflammatory potential. By contrast, necrotic cell death via necroptosis and pyroptosis-driven by membrane-damaging MLKL and gasdermins, respectively-can both initiate and propagate inflammatory responses. In this review, we provide insights into the function and regulation of MLKL and gasdermin necrotic effector proteins and drivers of plasma membrane rupture. We evaluate genetic evidence that MLKL- and gasdermin-driven necrosis may either provide protection against, or contribute to, disease states in a context-dependent manner. These cumulative insights using gene-targeted mice underscore the necessity for future research examining pyroptotic and necroptotic cell death in human tissue, as a basis for developing specific necrotic inhibitors with the potential to benefit a spectrum of pathological conditions.


Assuntos
Apoptose , Gasderminas , Humanos , Animais , Camundongos , Necrose/metabolismo , Apoptose/fisiologia , Piroptose/fisiologia , Morte Celular , Inflamassomos/metabolismo , Proteínas Quinases/metabolismo
3.
J Cell Biol ; 223(3)2024 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-38329462

RESUMO

TNF signaling does not result in cell death unless multiple inhibitory signals are overcome, which can be accomplished by simultaneous signaling through IFNγ. In this issue, Deng and colleagues (http://doi.org/10.1083/jcb.202305026) dissect the mechanisms by which IFNγ signaling combines with TNF to mediate cell death through caspase-8, discussed by James E. Vince.


Assuntos
Morte Celular , Interferon gama , Transdução de Sinais , Interferon gama/fisiologia , Caspase 8/fisiologia , Fatores de Necrose Tumoral/fisiologia
4.
Immunol Cell Biol ; 102(1): 58-70, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37855066

RESUMO

The clinical development of Natural Killer (NK) cell-mediated immunotherapy marks a milestone in the development of new cancer therapies and has gained traction due to the intrinsic ability of the NK cell to target and kill tumor cells. To fully harness the tumor killing ability of NK cells, we need to improve NK cell persistence and to overcome suppression of NK cell activation in the tumor microenvironment. The trans-membrane, protein tyrosine phosphatase CD45, regulates NK cell homeostasis, with the genetic loss of CD45 in mice resulting in increased numbers of mature NK cells. This suggests that CD45-deficient NK cells might display enhanced persistence following adoptive transfer. However, we demonstrate here that adoptive transfer of CD45-deficiency did not enhance NK cell persistence in mice, and instead, the homeostatic disturbance of NK cells in CD45-deficient mice stemmed from a developmental defect in the progenitor population. The enhanced maturation within the CD45-deficient NK cell compartment was intrinsic to the NK cell lineage, and independent of the developmental defect. CD45 is not a conventional immune checkpoint candidate, as systemic loss is detrimental to T and B cell development, compromising the adaptive immune system. Nonetheless, this study suggests that inhibition of CD45 in progenitor or stem cell populations may improve the yield of in vitro generated NK cells for adoptive therapy.


Assuntos
Células Matadoras Naturais , Neoplasias , Animais , Camundongos , Imunoterapia , Imunoterapia Adotiva , Microambiente Tumoral
5.
PNAS Nexus ; 3(1): pgad438, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38156288

RESUMO

Skin inflammation is a complex process implicated in various dermatological disorders. The chronic proliferative dermatitis (cpd) phenotype driven by the cpd mutation (cpdm) in the Sharpin gene is characterized by dermal inflammation and epidermal abnormalities. Tumour necrosis factor (TNF) and caspase-8-driven cell death causes the pathogenesis of Sharpincpdm mice; however, the role of mind bomb 2 (MIB2), a pro-survival E3 ubiquitin ligase involved in TNF signaling, in skin inflammation remains unknown. Here, we demonstrate that MIB2 antagonizes inflammatory dermatitis in the context of the cpd mutation. Surprisingly, the role of MIB2 in limiting skin inflammation is independent of its known pro-survival function and E3 ligase activity. Instead, MIB2 enhances the production of wound-healing molecules, granulocyte colony-stimulating factor, and Eotaxin, within the skin. This discovery advances our comprehension of inflammatory cytokines and chemokines associated with cpdm pathogenesis and highlights the significance of MIB2 in inflammatory skin disease that is independent of its ability to regulate TNF-induced cell death.

6.
Semin Immunol ; 70: 101832, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37625331

RESUMO

The programmed cell death machinery exhibits surprising flexibility, capable of crosstalk and non-apoptotic roles. Much of this complexity arises from the diverse functions of caspase-8, a cysteine-aspartic acid protease typically associated with activating caspase-3 and - 7 to induce apoptosis. However, recent research has revealed that caspase-8 also plays a role in regulating the lytic gasdermin cell death machinery, contributing to pyroptosis and immune responses in contexts such as infection, autoinflammation, and T-cell signalling. In mice, loss of caspase-8 results in embryonic lethality from unrestrained necroptotic killing, while in humans caspase-8 deficiency can lead to an autoimmune lymphoproliferative syndrome, immunodeficiency, inflammatory bowel disease or, when it can't cleave its substrate RIPK1, early onset periodic fevers. This review focuses on non-canonical caspase-8 signalling that drives immune responses, including its regulation of inflammatory gene transcription, activation within inflammasome complexes, and roles in pyroptotic cell death. Ultimately, a deeper understanding of caspase-8 function will aid in determining whether, and when, targeting caspase-8 pathways could be therapeutically beneficial in human diseases.


Assuntos
Apoptose , Caspase 8 , Piroptose , Animais , Humanos , Camundongos , Apoptose/fisiologia , Caspase 1/metabolismo , Caspase 8/metabolismo , Caspases/metabolismo , Inflamassomos/metabolismo , Piroptose/fisiologia
7.
Life Sci Alliance ; 6(6)2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36977592

RESUMO

Staphylococcus aureus causes severe infections such as pneumonia and sepsis depending on the pore-forming toxin Panton-Valentine leukocidin (PVL). PVL kills and induces inflammation in macrophages and other myeloid cells by interacting with the human cell surface receptor, complement 5a receptor 1 (C5aR1). C5aR1 expression is tighly regulated and may thus modulate PVL activity, although the mechanisms involved remain incompletely understood. Here, we used a genome-wide CRISPR/Cas9 screen and identified F-box protein 11 (FBXO11), an E3 ubiquitin ligase complex member, to promote PVL toxicity. Genetic deletion of FBXO11 reduced the expression of C5aR1 at the mRNA level, whereas ectopic expression of C5aR1 in FBXO11-/- macrophages, or priming with LPS, restored C5aR1 expression and thereby PVL toxicity. In addition to promoting PVL-mediated killing, FBXO11 dampens secretion of IL-1ß after NLRP3 activation in response to bacterial toxins by reducing mRNA levels in a BCL-6-dependent and BCL-6-independent manner. Overall, these findings highlight that FBXO11 regulates C5aR1 and IL-1ß expression and controls macrophage cell death and inflammation following PVL exposure.


Assuntos
Toxinas Bacterianas , Proteínas F-Box , Humanos , Neutrófilos/metabolismo , Toxinas Bacterianas/genética , Toxinas Bacterianas/metabolismo , Exotoxinas/metabolismo , Exotoxinas/toxicidade , Inflamação/genética , Inflamação/metabolismo , Macrófagos/metabolismo , Morte Celular/genética , Leucocidinas/farmacologia , Leucocidinas/toxicidade , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteína-Arginina N-Metiltransferases/metabolismo , Proteínas F-Box/genética , Proteínas F-Box/metabolismo
8.
Cancer Res ; 82(23): 4457-4473, 2022 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-36206301

RESUMO

Ovarian carcinosarcoma (OCS) is an aggressive and rare tumor type with limited treatment options. OCS is hypothesized to develop via the combination theory, with a single progenitor resulting in carcinomatous and sarcomatous components, or alternatively via the conversion theory, with the sarcomatous component developing from the carcinomatous component through epithelial-to-mesenchymal transition (EMT). In this study, we analyzed DNA variants from isolated carcinoma and sarcoma components to show that OCS from 18 women is monoclonal. RNA sequencing indicated that the carcinoma components were more mesenchymal when compared with pure epithelial ovarian carcinomas, supporting the conversion theory and suggesting that EMT is important in the formation of these tumors. Preclinical OCS models were used to test the efficacy of microtubule-targeting drugs, including eribulin, which has previously been shown to reverse EMT characteristics in breast cancers and induce differentiation in sarcomas. Vinorelbine and eribulin more effectively inhibited OCS growth than standard-of-care platinum-based chemotherapy, and treatment with eribulin reduced mesenchymal characteristics and N-MYC expression in OCS patient-derived xenografts. Eribulin treatment resulted in an accumulation of intracellular cholesterol in OCS cells, which triggered a downregulation of the mevalonate pathway and prevented further cholesterol biosynthesis. Finally, eribulin increased expression of genes related to immune activation and increased the intratumoral accumulation of CD8+ T cells, supporting exploration of immunotherapy combinations in the clinic. Together, these data indicate that EMT plays a key role in OCS tumorigenesis and support the conversion theory for OCS histogenesis. Targeting EMT using eribulin could help improve OCS patient outcomes. SIGNIFICANCE: Genomic analyses and preclinical models of ovarian carcinosarcoma support the conversion theory for disease development and indicate that microtubule inhibitors could be used to suppress EMT and stimulate antitumor immunity.


Assuntos
Antineoplásicos , Carcinoma , Carcinossarcoma , Neoplasias Ovarianas , Humanos , Feminino , Transição Epitelial-Mesenquimal/genética , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , Transformação Celular Neoplásica , Antineoplásicos/farmacologia , Microtúbulos , Carcinossarcoma/genética , Carcinossarcoma/patologia
9.
Cell Rep ; 40(12): 111374, 2022 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-36130496

RESUMO

The egress of Candida hyphae from macrophages facilitates immune evasion, but it also alerts macrophages to infection and triggers inflammation. To better define the mechanisms, here we develop an imaging assay to directly and dynamically quantify hyphal escape and correlate it to macrophage responses. The assay reveals that Candida escapes by using two pore-forming proteins to permeabilize macrophage membranes: the fungal toxin candidalysin and Nlrp3 inflammasome-activated Gasdermin D. Candidalysin plays a major role in escape, with Nlrp3 and Gasdermin D-dependent and -independent contributions. The inactivation of Nlrp3 does not reduce hyphal escape, and we identify ETosis via macrophage extracellular trap formation as an additional pathway facilitating hyphal escape. Suppressing hyphal escape does not reduce fungal loads, but it does reduce inflammatory activation. Our findings explain how Candida escapes from macrophages by using three strategies: permeabilizing macrophage membranes via candidalysin and engaging two host cell death pathways, Gasdermin D-mediated pyroptosis and ETosis.


Assuntos
Candida albicans , Micotoxinas , Candida albicans/metabolismo , Morte Celular , Proteínas Fúngicas/metabolismo , Interações Hospedeiro-Patógeno , Hifas/metabolismo , Inflamassomos/metabolismo , Macrófagos/metabolismo , Micotoxinas/metabolismo , Micotoxinas/farmacologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo
10.
Biochem J ; 479(10): 1083-1102, 2022 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-35608339

RESUMO

For over 15 years the lytic cell death termed pyroptosis was defined by its dependency on the inflammatory caspase, caspase-1, which, upon pathogen sensing, is activated by innate immune cytoplasmic protein complexes known as inflammasomes. However, this definition of pyroptosis changed when the pore-forming protein gasdermin D (GSDMD) was identified as the caspase-1 (and caspase-11) substrate required to mediate pyroptotic cell death. Consequently, pyroptosis has been redefined as a gasdermin-dependent cell death. Studies now show that, upon liberation of the N-terminal domain, five gasdermin family members, GSDMA, GSDMB, GSDMC, GSDMD and GSDME can all form plasma membrane pores to induce pyroptosis. Here, we review recent research into the diverse stimuli and cell death signaling pathways involved in the activation of gasdermins; death and toll-like receptor triggered caspase-8 activation of GSDMD or GSMDC, apoptotic caspase-3 activation of GSDME, perforin-granzyme A activation of GSDMB, and bacterial protease activation of GSDMA. We highlight findings that have begun to unravel the physiological situations and disease states that result from gasdermin signaling downstream of inflammasome activation, death receptor and mitochondrial apoptosis, and necroptosis. This new era in cell death research therefore holds significant promise in identifying how distinct, yet often networked, pyroptotic cell death pathways might be manipulated for therapeutic benefit to treat a range of malignant conditions associated with inflammation, infection and cancer.


Assuntos
Inflamassomos , Piroptose , Caspase 1/metabolismo , Caspases/metabolismo , Inflamassomos/metabolismo , Proteínas de Ligação a Fosfato/metabolismo
11.
Immunity ; 55(3): 423-441.e9, 2022 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-35139355

RESUMO

Cell death plays an important role during pathogen infections. Here, we report that interferon-γ (IFNγ) sensitizes macrophages to Toll-like receptor (TLR)-induced death that requires macrophage-intrinsic death ligands and caspase-8 enzymatic activity, which trigger the mitochondrial apoptotic effectors, BAX and BAK. The pro-apoptotic caspase-8 substrate BID was dispensable for BAX and BAK activation. Instead, caspase-8 reduced pro-survival BCL-2 transcription and increased inducible nitric oxide synthase (iNOS), thus facilitating BAX and BAK signaling. IFNγ-primed, TLR-induced macrophage killing required iNOS, which licensed apoptotic caspase-8 activity and reduced the BAX and BAK inhibitors, A1 and MCL-1. The deletion of iNOS or caspase-8 limited SARS-CoV-2-induced disease in mice, while caspase-8 caused lethality independent of iNOS in a model of hemophagocytic lymphohistiocytosis. These findings reveal that iNOS selectively licenses programmed cell death, which may explain how nitric oxide impacts disease severity in SARS-CoV-2 infection and other iNOS-associated inflammatory conditions.


Assuntos
COVID-19/imunologia , Caspase 8/metabolismo , Interferon gama/metabolismo , Linfo-Histiocitose Hemofagocítica/imunologia , Macrófagos/imunologia , Mitocôndrias/metabolismo , SARS-CoV-2/fisiologia , Animais , Caspase 8/genética , Células Cultivadas , Citotoxicidade Imunológica , Humanos , Interferon gama/genética , Ativação de Macrófagos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Óxido Nítrico Sintase Tipo II/metabolismo , Moléculas com Motivos Associados a Patógenos/imunologia , Transdução de Sinais , Proteína Killer-Antagonista Homóloga a bcl-2/genética , Proteína Killer-Antagonista Homóloga a bcl-2/metabolismo , Proteína X Associada a bcl-2/genética , Proteína X Associada a bcl-2/metabolismo
12.
Nat Commun ; 12(1): 2713, 2021 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-33976225

RESUMO

Interleukin-1ß (IL-1ß) is activated by inflammasome-associated caspase-1 in rare autoinflammatory conditions and in a variety of other inflammatory diseases. Therefore, IL-1ß activity must be fine-tuned to enable anti-microbial responses whilst limiting collateral damage. Here, we show that precursor IL-1ß is rapidly turned over by the proteasome and this correlates with its decoration by K11-linked, K63-linked and K48-linked ubiquitin chains. The ubiquitylation of IL-1ß is not just a degradation signal triggered by inflammasome priming and activating stimuli, but also limits IL-1ß cleavage by caspase-1. IL-1ß K133 is modified by ubiquitin and forms a salt bridge with IL-1ß D129. Loss of IL-1ß K133 ubiquitylation, or disruption of the K133:D129 electrostatic interaction, stabilizes IL-1ß. Accordingly, Il1bK133R/K133R mice have increased levels of precursor IL-1ß upon inflammasome priming and increased production of bioactive IL-1ß, both in vitro and in response to LPS injection. These findings identify mechanisms that can limit IL-1ß activity and safeguard against damaging inflammation.


Assuntos
Caspase 1/genética , Inflamassomos/genética , Interleucina-1beta/genética , Complexo de Endopeptidases do Proteassoma/genética , Processamento de Proteína Pós-Traducional , Animais , Caspase 1/imunologia , Células HEK293 , Humanos , Inflamassomos/imunologia , Inflamação , Interleucina-1beta/imunologia , Lipopolissacarídeos/administração & dosagem , Macrófagos/imunologia , Macrófagos/patologia , Camundongos , Camundongos Knockout , Cultura Primária de Células , Complexo de Endopeptidases do Proteassoma/imunologia , Proteólise , Espécies Reativas de Oxigênio/imunologia , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Ubiquitina/genética , Ubiquitina/imunologia , Ubiquitinação
13.
Cell Death Dis ; 12(1): 28, 2021 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-33414459

RESUMO

The IκB kinase complex, consisting of IKK1, IKK2 and the regulatory subunit NEMO, is required for NF-κB signalling following the activation of several cell surface receptors, such as members of the Tumour Necrosis Factor Receptor superfamily and the Interleukin-1 Receptor. This is critical for haematopoietic cell proliferation, differentiation, survival and immune responses. To determine the role of IKK in the regulation of haematopoiesis, we used the Rosa26Cre-ERT2 Cre/lox recombination system to achieve targeted, haematopoietic cell-restricted deletion of the genes for IKK1 or IKK2 in vivo. We found that the IKK complex plays a critical role in haematopoietic cell development and function. Deletion of IKK2, but not loss of IKK1, in haematopoietic cells led to an expansion of CD11b/Gr-1-positive myeloid cells (neutrophilia), severe anaemia and thrombocytosis, with reduced numbers of long-term haematopoietic stem cells (LT-HSCs), short-term haematopoietic stem cells (ST-HSCs) and multipotential progenitor cells (MPPs), increased circulating interleukin-6 (IL-6) and severe gastrointestinal inflammation. These findings identify distinct functions for the two IKK catalytic subunits, IKK1 and IKK2, in the haematopoietic system.


Assuntos
Gastrite/imunologia , Hematopoese/imunologia , Quinase I-kappa B/imunologia , Interleucina-6/imunologia , Células-Tronco/imunologia , Animais , Diferenciação Celular , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , NF-kappa B/imunologia , Células-Tronco/citologia
14.
Diabetes ; 70(3): 772-787, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33323396

RESUMO

Low-grade persistent inflammation is a feature of diabetes-driven vascular complications, in particular activation of the Nod-like receptor family pyrin domain containing 3 (NLRP3) inflammasome to trigger the maturation and release of the inflammatory cytokine interleukin-1ß (IL-1ß). We investigated whether inhibiting the NLRP3 inflammasome, through the use of the specific small-molecule NLRP3 inhibitor MCC950, could reduce inflammation, improve vascular function, and protect against diabetes-associated atherosclerosis in the streptozotocin-induced diabetic apolipoprotein E-knockout mouse. Diabetes led to an approximately fourfold increase in atherosclerotic lesions throughout the aorta, which were significantly attenuated with MCC950 (P < 0.001). This reduction in lesions was associated with decreased monocyte-macrophage content, reduced necrotic core, attenuated inflammatory gene expression (IL-1ß, tumor necrosis factor-α, intracellular adhesion molecule 1, and MCP-1; P < 0.05), and reduced oxidative stress, while maintaining fibrous cap thickness. Additionally, vascular function was improved in diabetic vessels of mice treated with MCC950 (P < 0.05). In a range of cell lines (murine bone marrow-derived macrophages, human monocytic THP-1 cells, phorbol 12-myristate 13-acetate-differentiated human macrophages, and aortic smooth muscle cells from humans with diabetes), MCC950 significantly reduced IL-1ß and/or caspase-1 secretion and attenuated leukocyte-smooth muscle cell interactions under high glucose or lipopolysaccharide conditions. In summary, MCC950 reduces plaque development, promotes plaque stability, and improves vascular function, suggesting that targeting NLRP3-mediated inflammation is a novel therapeutic strategy to improve diabetes-associated vascular disease.


Assuntos
Aterosclerose/metabolismo , Inflamassomos/metabolismo , Miócitos de Músculo Liso/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Animais , Apolipoproteínas E/genética , Apolipoproteínas E/metabolismo , Aterosclerose/genética , Glicemia/metabolismo , Células Cultivadas , Imunofluorescência , Glucose/farmacologia , Humanos , Imuno-Histoquímica , Inflamassomos/genética , Lipopolissacarídeos/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/genética , Células THP-1 , Acetato de Tetradecanoilforbol/análogos & derivados , Acetato de Tetradecanoilforbol/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
15.
Immunity ; 53(3): 533-547.e7, 2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32735843

RESUMO

Programmed cell death contributes to host defense against pathogens. To investigate the relative importance of pyroptosis, necroptosis, and apoptosis during Salmonella infection, we infected mice and macrophages deficient for diverse combinations of caspases-1, -11, -12, and -8 and receptor interacting serine/threonine kinase 3 (RIPK3). Loss of pyroptosis, caspase-8-driven apoptosis, or necroptosis had minor impact on Salmonella control. However, combined deficiency of these cell death pathways caused loss of bacterial control in mice and their macrophages, demonstrating that host defense can employ varying components of several cell death pathways to limit intracellular infections. This flexible use of distinct cell death pathways involved extensive cross-talk between initiators and effectors of pyroptosis and apoptosis, where initiator caspases-1 and -8 also functioned as executioners when all known effectors of cell death were absent. These findings uncover a highly coordinated and flexible cell death system with in-built fail-safe processes that protect the host from intracellular infections.


Assuntos
Apoptose/imunologia , Macrófagos/imunologia , Necroptose/imunologia , Piroptose/imunologia , Infecções por Salmonella/imunologia , Salmonella/imunologia , Animais , Caspase 1/deficiência , Caspase 1/genética , Caspase 12/deficiência , Caspase 12/genética , Caspase 8/genética , Caspases Iniciadoras/deficiência , Caspases Iniciadoras/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteína Serina-Treonina Quinases de Interação com Receptores/deficiência , Proteína Serina-Treonina Quinases de Interação com Receptores/genética
16.
Nat Microbiol ; 5(11): 1418-1427, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32807891

RESUMO

Sensing of microbes activates the innate immune system, depending on functional mitochondria. However, pathogenic bacteria inhibit mitochondrial activity by delivering toxins via outer membrane vesicles (OMVs). How macrophages respond to pathogenic microbes that target mitochondria remains unclear. Here, we show that macrophages exposed to OMVs from Neisseria gonorrhoeae, uropathogenic Escherichia coli and Pseudomonas aeruginosa induce mitochondrial apoptosis and NLRP3 inflammasome activation. OMVs and toxins that cause mitochondrial dysfunction trigger inhibition of host protein synthesis, which depletes the unstable BCL-2 family member MCL-1 and induces BAK-dependent mitochondrial apoptosis. In parallel with caspase-11-mediated pyroptosis, mitochondrial apoptosis and potassium ion efflux activate the NLRP3 inflammasome after OMV exposure in vitro. Importantly, in the in vivo setting, the activation and release of interleukin-1ß in response to N. gonorrhoeae OMVs is regulated by mitochondrial apoptosis. Our data highlight how innate immune cells sense infections by monitoring mitochondrial health.


Assuntos
Apoptose , Membrana Externa Bacteriana/metabolismo , Bactérias Gram-Negativas/metabolismo , Mitocôndrias/patologia , Animais , Vesículas Extracelulares , Bactérias Gram-Negativas/patogenicidade , Infecções por Bactérias Gram-Negativas/imunologia , Inflamação , Interleucina-1beta/metabolismo , Macrófagos/metabolismo , Macrófagos/microbiologia , Macrófagos/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitocôndrias/metabolismo , Biossíntese de Proteínas , Proteína Killer-Antagonista Homóloga a bcl-2/genética , Proteína Killer-Antagonista Homóloga a bcl-2/metabolismo
17.
Nat Commun ; 10(1): 4190, 2019 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-31519898

RESUMO

The KRAS oncoprotein, a critical driver in 33% of lung adenocarcinoma (LUAD), has remained an elusive clinical target due to its perceived undruggable nature. The identification of dependencies borne through common co-occurring mutations are sought to more effectively target KRAS-mutant lung cancer. Approximately 20% of KRAS-mutant LUAD carry loss-of-function mutations in KEAP1, a negative regulator of the antioxidant response transcription factor NFE2L2/NRF2. We demonstrate that Keap1-deficient KrasG12D lung tumors arise from a bronchiolar cell-of-origin, lacking pro-tumorigenic macrophages observed in tumors originating from alveolar cells. Keap1 loss activates the pentose phosphate pathway, inhibition of which, using 6-AN, abrogated tumor growth. These studies highlight alternative therapeutic approaches to specifically target this unique subset of KRAS-mutant LUAD cancers.


Assuntos
Adenocarcinoma de Pulmão/genética , Neoplasias Pulmonares/genética , Proteínas Proto-Oncogênicas p21(ras)/genética , Adenocarcinoma de Pulmão/imunologia , Adenocarcinoma de Pulmão/metabolismo , Animais , Western Blotting , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/imunologia , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Linhagem Celular Tumoral , Feminino , Citometria de Fluxo , Imuno-Histoquímica , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Espécies Reativas de Oxigênio/metabolismo
18.
J Immunol ; 203(3): 736-748, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31209100

RESUMO

The pyroptotic cell death effector gasdermin D (GSDMD) is required for murine models of hereditary inflammasome-driven, IL-1ß-dependent, autoinflammatory disease, making it an attractive therapeutic target. However, the importance of GSDMD for more common conditions mediated by pathological IL-1ß activation, such as gout, remain unclear. In this study, we address whether GSDMD and the recently described GSDMD inhibitor necrosulfonamide (NSA) contribute to monosodium urate (MSU) crystal-induced cell death, IL-1ß release, and autoinflammation. We demonstrate that MSU crystals, the etiological agent of gout, rapidly activate GSDMD in murine macrophages. Despite this, the genetic deletion of GSDMD or the other lytic effector implicated in MSU crystal killing, mixed lineage kinase domain-like (MLKL), did not prevent MSU crystal-induced cell death. Consequently, GSDMD or MLKL loss did not hinder MSU crystal-mediated release of bioactive IL-1ß. Consistent with in vitro findings, IL-1ß induction and autoinflammation in MSU crystal-induced peritonitis was not reduced in GSDMD-deficient mice. Moreover, we show that the reported GSDMD inhibitor, NSA, blocks inflammasome priming and caspase-1 activation, thereby preventing pyroptosis independent of GSDMD targeting. The inhibition of cathepsins, widely implicated in particle-induced macrophage killing, also failed to prevent MSU crystal-mediated cell death. These findings 1) demonstrate that not all IL-1ß-driven autoinflammatory conditions will benefit from the therapeutic targeting of GSDMD, 2) document a unique mechanism of MSU crystal-induced macrophage cell death not rescued by pan-cathepsin inhibition, and 3) show that NSA inhibits inflammasomes upstream of GSDMD to prevent pyroptotic cell death and IL-1ß release.


Assuntos
Gota/patologia , Interleucina-1beta/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Ligação a Fosfato/metabolismo , Piroptose/fisiologia , Ácido Úrico/metabolismo , Acrilamidas/farmacologia , Animais , Caspase 1/metabolismo , Catepsinas/antagonistas & inibidores , Feminino , Peptídeos e Proteínas de Sinalização Intracelular/genética , Macrófagos/imunologia , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Nitrofuranos/farmacologia , Peritonite/induzido quimicamente , Peritonite/imunologia , Peritonite/patologia , Proteínas de Ligação a Fosfato/genética , Proteínas Quinases/genética , Estirenos/farmacologia , Sulfonamidas/farmacologia
19.
J Cell Sci ; 132(5)2019 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-30709919

RESUMO

Necroptosis is an inflammatory form of programmed cell death mediated by the pseudokinase mixed-lineage kinase domain-like protein (MLKL). Upon phosphorylation by receptor-interacting protein kinase-3 (RIPK3), MLKL oligomerizes, and translocates to and disrupts the plasma membrane, thereby causing necroptotic cell lysis. Herein, we show that activation of necroptosis in mouse dermal fibroblasts (MDFs) and HT-29 human colorectal cancer cells results in accumulation of the autophagic marker, lipidated LC3B (also known as MAP1LC3B), in an MLKL-dependent manner. Unexpectedly, the necroptosis-induced increase in lipidated LC3B was due to inhibition of autophagic flux, not the activation of autophagy. Inhibition of autophagy by MLKL correlated with a decrease in autophagosome and/or autolysosome function, and required the association of activated MLKL with intracellular membranes. Collectively, our findings uncover an additional role for the MLKL pseudokinase, namely to inhibit autophagy during necroptosis.


Assuntos
Autofagossomos/metabolismo , Neoplasias Colorretais/metabolismo , Derme/patologia , Fibroblastos/metabolismo , Membranas Intracelulares/metabolismo , Proteínas Quinases/metabolismo , Animais , Autofagia , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Neoplasias Colorretais/patologia , Fibroblastos/patologia , Técnicas de Inativação de Genes , Células HT29 , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Necroptose , Proteínas Quinases/genética , Transporte Proteico
20.
Nat Immunol ; 20(4): 397-406, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30742078

RESUMO

Inflammasomes are one of the most important mechanisms for innate immune defense against microbial infection but are also known to drive various inflammatory disorders via processing and release of the cytokine IL-1ß. As research into the regulation and effects of inflammasomes in disease has rapidly expanded, a variety of cell types, including dendritic cells (DCs), have been suggested to be inflammasome competent. Here we describe a major fault in the widely used DC-inflammasome model of bone marrow-derived dendritic cells (BMDCs) generated with the cytokine granulocyte-macrophage colony-stimulating factor (GM-CSF). We found that among GM-CSF bone marrow-derived cell populations, monocyte-derived macrophages, rather than BMDCs, were responsible for inflammasome activation and IL-1ß secretion. Therefore, GM-CSF bone marrow-derived cells should not be used to draw conclusions about DC-dependent inflammasome biology, although they remain a useful tool for analysis of inflammasome responses in monocytes-macrophages.


Assuntos
Células Dendríticas/imunologia , Fator Estimulador de Colônias de Granulócitos e Macrófagos/farmacologia , Inflamassomos/metabolismo , Macrófagos/imunologia , Animais , Células da Medula Óssea/efeitos dos fármacos , Células da Medula Óssea/imunologia , Células Cultivadas , Interleucina-1beta/metabolismo , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Modelos Imunológicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA