Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Viruses ; 11(1)2019 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-30650570

RESUMO

Simian hemorrhagic fever virus (SHFV) causes a fulminant and typically lethal viral hemorrhagic fever (VHF) in macaques (Cercopithecinae: Macaca spp.) but causes subclinical infections in patas monkeys (Cercopithecinae: Erythrocebus patas). This difference in disease course offers a unique opportunity to compare host responses to infection by a VHF-causing virus in biologically similar susceptible and refractory animals. Patas and rhesus monkeys were inoculated side-by-side with SHFV. Unlike the severe disease observed in rhesus monkeys, patas monkeys developed a limited clinical disease characterized by changes in complete blood counts, serum chemistries, and development of lymphadenopathy. Viral RNA was measurable in circulating blood 2 days after exposure, and its duration varied by species. Infectious virus was detected in terminal tissues of both patas and rhesus monkeys. Varying degrees of overlap in changes in serum concentrations of interferon (IFN)-γ, monocyte chemoattractant protein (MCP)-1, and interleukin (IL)-6 were observed between patas and rhesus monkeys, suggesting the presence of common and species-specific cytokine responses to infection. Similarly, quantitative immunohistochemistry of livers from terminal monkeys and whole blood flow cytometry revealed varying degrees of overlap in changes in macrophages, natural killer cells, and T-cells. The unexpected degree of overlap in host response suggests that relatively small subsets of a host's response to infection may be responsible for driving hemorrhagic fever pathogenesis. Furthermore, comparative SHFV infection in patas and rhesus monkeys offers an experimental model to characterize host⁻response mechanisms associated with viral hemorrhagic fever and evaluate pan-viral hemorrhagic fever countermeasures.


Assuntos
Infecções por Arterivirus/veterinária , Arterivirus/patogenicidade , Febres Hemorrágicas Virais/veterinária , Interações Hospedeiro-Patógeno , Doenças dos Macacos/imunologia , Animais , Anticorpos Antivirais/sangue , Arterivirus/imunologia , Infecções por Arterivirus/imunologia , Citocinas/sangue , Erythrocebus , Feminino , Febres Hemorrágicas Virais/imunologia , Macaca , Macrófagos/virologia , Masculino , Doenças dos Macacos/virologia , RNA Viral , Replicação Viral
2.
J Immunol ; 200(12): 4157-4169, 2018 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-29735480

RESUMO

Murine norovirus (NoV) is genetically similar to human NoV and offers both an efficient in vitro cell culture system and an animal model by which to investigate the molecular basis of replication. In this study, we present a detailed global view of host alterations to cellular pathways that occur during the progression of a NoV infection. This was accomplished for both Mus musculus BALB/c-derived RAW264.7 (RAW) cells, an immortalized cell line widely used in in vitro replication studies, and primary bone marrow-derived macrophages (BMDM), representing a permissive in vivo target cell in the host. Murine NoV replicated in both cell types, although detected genome copies were approximately one log lower in BMDM compared with RAW cells. RAW and BMDM cells shared an IRF3/7-based IFN response that occurred early in infection. In RAW cells, transcriptional upregulation and INF-ß expression were not coupled in that a significant delay in the detection of secreted INF-ß was observed. In contrast, primary BMDM showed an early upregulation of transcripts and immediate release of INF-ß that might account for lower virus yield. Differences in the transcriptional pathway responses included a marked decrease in expression of key genes in the cell cycle and lipid pathways in RAW cells compared with that of BMDM. Our comparative analysis indicates the existence of varying host responses to virus infection in populations of permissive cells. Awareness of these differences at the gene level will be important in the application of a given permissive culture system to the study of NoV immunity, pathogenesis, and drug development.


Assuntos
Infecções por Caliciviridae/genética , Macrófagos/virologia , Transcriptoma/genética , Animais , Infecções por Caliciviridae/virologia , Ciclo Celular/genética , Linhagem Celular , Replicação do DNA/genética , Fator Regulador 3 de Interferon/genética , Fator Regulador 7 de Interferon/genética , Interferon beta/genética , Camundongos , Camundongos Endogâmicos BALB C , Norovirus/genética , Células RAW 264.7 , Transcrição Gênica/genética
3.
Liver Int ; 36(12): 1783-1792, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27232579

RESUMO

BACKGROUND: Chronic liver injury can result in fibrosis that may progress over years to end-stage liver disease. The most effective anti-fibrotic therapy is treatment of the underlying disease, however when not possible, interventions to reverse or slow fibrosis progression are needed. AIM: The aim of this study was to study the safety and tolerability of simtuzumab, a monoclonal antibody directed against lysyl oxidase-like 2 (LOXL2) enzyme, in subjects with hepatitis C virus (HCV), human immunodeficiency virus (HIV), or HCV-HIV co-infection and advanced liver disease. METHODS: Eighteen subjects with advanced liver fibrosis received simtuzumab 700 mg intravenously every 2 weeks for 22 weeks. Transjugular liver biopsies were performed during screening and at the end of treatment to measure hepatic venous pressure gradient (HVPG) and to stage fibrosis. RESULTS: Treatment was well-tolerated with no discontinuations due to adverse events. No significant changes were seen in HVPG or liver biopsy fibrosis score after treatment. Exploratory transcriptional and protein profiling using paired pre- and post-treatment liver biopsy and serum samples suggested up-regulation of TGF-ß3 and IL-10 pathways with treatment. CONCLUSION: In this open-label, pilot clinical trial, simtuzumab treatment was well-tolerated in HCV- and HIV-infected subjects with advanced liver disease. Putative modulation of TGF-ß3 and IL-10 pathways during simtuzumab treatment merits investigation in future trials.


Assuntos
Anticorpos Monoclonais Humanizados/administração & dosagem , Coinfecção/complicações , Infecções por HIV/complicações , Hepatite C Crônica/complicações , Cirrose Hepática/tratamento farmacológico , Administração Intravenosa , Adulto , Anticorpos Monoclonais Humanizados/efeitos adversos , Coinfecção/virologia , Progressão da Doença , Feminino , Humanos , Interleucina-10/sangue , Fígado/patologia , Cirrose Hepática/virologia , Masculino , Maryland , Pessoa de Meia-Idade , Pressão na Veia Porta/efeitos dos fármacos , Fator de Crescimento Transformador beta3/sangue , Resultado do Tratamento
4.
Infect Immun ; 83(11): 4277-92, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26283340

RESUMO

Polymorphonuclear leukocytes (PMN) from patients with chronic granulomatous disease (CGD) fail to produce microbicidal concentrations of reactive oxygen species (ROS) due to mutations in NOX2. Patients with CGD suffer from severe, life-threatening infections and inflammatory complications. Granulibacter bethesdensis is an emerging Gram-negative pathogen in CGD that resists killing by PMN of CGD patients (CGD PMN) and inhibits PMN apoptosis through unknown mechanisms. Microarray analysis was used to study mRNA expression in PMN from healthy subjects (normal PMN) and CGD PMN during incubation with G. bethesdensis and, simultaneously, in G. bethesdensis with normal and CGD PMN. We detected upregulation of antiapoptotic genes (e.g., XIAP and GADD45B) and downregulation of proapoptotic genes (e.g., CASP8 and APAF1) in infected PMN. Transcript and protein levels of inflammation- and immunity-related genes were also altered. Upon interaction with PMN, G. bethesdensis altered the expression of ROS resistance genes in the presence of normal but not CGD PMN. Levels of bacterial stress response genes, including the ClpB gene, increased during phagocytosis by both normal and CGD PMN demonstrating responses to oxygen-independent PMN antimicrobial systems. Antisense knockdown demonstrated that ClpB is dispensable for extracellular growth but is essential for bacterial resistance to both normal and CGD PMN. Metabolic adaptation of Granulibacter growth in PMN included the upregulation of pyruvate dehydrogenase. Pharmacological inhibition of pyruvate dehydrogenase by triphenylbismuthdichloride was lethal to Granulibacter. This study expands knowledge of microbial pathogenesis of Granulibacter in cells from permissive (CGD) and nonpermissive (normal) hosts and identifies potentially druggable microbial factors, such as pyruvate dehydrogenase and ClpB, to help combat this antibiotic-resistant pathogen.


Assuntos
Acetobacteraceae/genética , Proteínas de Bactérias/genética , Doença Granulomatosa Crônica/genética , Neutrófilos/metabolismo , Acetobacteraceae/metabolismo , Adulto , Idoso , Proteínas de Bactérias/metabolismo , Feminino , Perfilação da Expressão Gênica , Doença Granulomatosa Crônica/imunologia , Doença Granulomatosa Crônica/microbiologia , Voluntários Saudáveis , Interações Hospedeiro-Patógeno , Humanos , Masculino , Pessoa de Meia-Idade , Neutrófilos/microbiologia , Fagocitose , Adulto Jovem
5.
Infect Immun ; 83(2): 534-43, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25404022

RESUMO

Chlamydia trachomatis is an obligate intracellular epitheliotropic bacterial pathogen of humans. Infection of the eye can result in trachoma, the leading cause of preventable blindness in the world. The pathophysiology of blinding trachoma is driven by multiple episodes of reinfection of conjunctival epithelial cells, producing an intense chronic inflammatory response resulting in submucosal tissue remodeling and scarring. Recent reports have shown that infection with trachoma organisms lacking the cryptic chlamydial plasmid is highly attenuated in macaque eyes, a relevant experimental model of human trachoma infection. To better understand the molecular basis of plasmid-mediated infection attenuation and the potential modulation of host immunity, we conducted transcriptional profiling of human epithelial cells infected with C. trachomatis plasmid-bearing (A2497) and plasmid-deficient (A2497P(-)) organisms. Infection of human epithelial cells with either strain increased the expression of host genes coding for proinflammatory (granulocyte-macrophage colony-stimulating factor [GM-CSF], macrophage colony-stimulating factor [MCSF], interleukin-6 [IL-6], IL-8, IL-1α, CXCL1, CXCL2, CXCL3, intercellular adhesion molecule 1 [ICAM1]), chemoattraction (CCL20, CCL5, CXCL10), immune suppression (PD-L1, NFKB1B, TNFAIP3, CGB), apoptosis (CASP9, FAS, IL-24), and cell growth and fibrosis (EGR1 and IL-20) proteins. Statistically significant increases in the levels of expression of many of these genes were found in A2497-infected cells compared to the levels of expression in A2497P(-)-infected cells. Our findings suggest that the chlamydial plasmid plays a focal role in the host cell inflammatory response to infection and immune avoidance. These results provide new insights into the role of the chlamydial plasmid as a chlamydial virulence factor and its contributions to trachoma pathogenesis.


Assuntos
Infecções por Chlamydia/patologia , Chlamydia trachomatis/genética , Plasmídeos/genética , Tracoma/patologia , Fatores de Virulência/genética , Proteínas de Bactérias/biossíntese , Proteínas de Bactérias/genética , Linfócitos T CD8-Positivos/imunologia , Linhagem Celular Tumoral , Infecções por Chlamydia/imunologia , Infecções por Chlamydia/microbiologia , Chlamydia trachomatis/imunologia , Chlamydia trachomatis/patogenicidade , Citocinas/biossíntese , Citocinas/genética , Células Epiteliais , Perfilação da Expressão Gênica , Glicogênio/metabolismo , Células HeLa , Humanos , Inflamação/imunologia , Inflamação/microbiologia , Interleucinas/biossíntese , Interleucinas/genética , Tracoma/imunologia , Tracoma/microbiologia
6.
J Clin Invest ; 124(8): 3352-63, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24983321

RESUMO

BACKGROUND. Hepatitis C virus (HCV) infects approximately 170 million people worldwide and may lead to cirrhosis and hepatocellular carcinoma in chronically infected individuals. Treatment is rapidly evolving from IFN-α-based therapies to IFN-α-free regimens that consist of directly acting antiviral agents (DAAs), which demonstrate improved efficacy and tolerability in clinical trials. Virologic relapse after DAA therapy is a common cause of treatment failure; however, it is not clear why relapse occurs or whether certain individuals are more prone to recurrent viremia. METHODS. We conducted a clinical trial using the DAA sofosbuvir plus ribavirin (SOF/RBV) and performed detailed mRNA expression analysis in liver and peripheral blood from patients who achieved either a sustained virologic response (SVR) or relapsed. RESULTS. On-treatment viral clearance was accompanied by rapid downregulation of IFN-stimulated genes (ISGs) in liver and blood, regardless of treatment outcome. Analysis of paired pretreatment and end of treatment (EOT) liver biopsies from SVR patients showed that viral clearance was accompanied by decreased expression of type II and III IFNs, but unexpectedly increased expression of the type I IFN IFNA2. mRNA expression of ISGs was higher in EOT liver biopsies of patients who achieved SVR than in patients who later relapsed. CONCLUSION. These results suggest that restoration of type I intrahepatic IFN signaling by EOT may facilitate HCV eradication and prevention of relapse upon withdrawal of SOF/RBV. TRIAL REGISTRATION. ClinicalTrials.gov NCT01441180.


Assuntos
Antivirais/administração & dosagem , Hepatite C Crônica/tratamento farmacológico , Hepatite C Crônica/imunologia , Interferons/metabolismo , Fígado/imunologia , Ribavirina/administração & dosagem , Uridina Monofosfato/análogos & derivados , Quimiocina CXCL10/sangue , Quimioterapia Combinada , Endopeptidases/genética , Expressão Gênica/efeitos dos fármacos , Hepatite C Crônica/genética , Humanos , Interferon-alfa/genética , Interferon-alfa/metabolismo , Interferons/classificação , Interferons/genética , Interleucinas/genética , Fígado/metabolismo , RNA Mensageiro/sangue , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Recidiva , Sofosbuvir , Resultado do Tratamento , Ubiquitina Tiolesterase , Uridina Monofosfato/administração & dosagem
7.
J Virol ; 86(13): 7241-8, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22514353

RESUMO

Previous studies indicate that mice infected with mixtures of mouse retroviruses (murine leukemia viruses [MuLVs]) exhibit dramatically altered pathology compared to mice infected with individual viruses of the mixture. Coinoculation of the ecotropic virus Friend MuLV (F-MuLV) with Fr98, a polytropic MuLV, induced a rapidly fatal neurological disease that was not observed in infections with either virus alone. The polytropic virus load in coinoculated mice was markedly enhanced, while the ecotropic F-MuLV load was unchanged. Furthermore, pseudotyping of the polytropic MuLV genome within ecotropic virions was nearly complete in coinoculated mice. In an effort to better understand these phenomena, we examined mixed retrovirus infections by utilizing in vitro cell lines. Similar to in vivo mixed infections, the polytropic MuLV genome was extensively pseudotyped within ecotropic virions; polytropic virus release was profoundly elevated in coinfected cells, and the ecotropic virus release was unchanged. A reduced level of polytropic SU protein on the surfaces of coinfected cells was observed and correlated with a reduced level of nonpseudotyped polytropic virion release. Marked amplification and pseudotyping of the polytropic MuLV were also observed in mixed Fr98-F-MuLV infections of cell lines derived from the central nervous system (CNS), the target for Fr98 pathogenesis. Additional experiments indicated that pseudotyping contributed to the elevated polytropic virus titer by increasing the efficiency of packaging and release of the polytropic genomes within ecotropic virions. Mixed infections are the rule rather than the exception in retroviral infection, and the ability to examine them in vitro should facilitate a more thorough understanding of retroviral interactions in general.


Assuntos
Coinfecção/virologia , Vírus da Leucemia Murina/crescimento & desenvolvimento , Vírus da Leucemia Murina/fisiologia , Liberação de Vírus , Animais , Linhagem Celular , Camundongos , Carga Viral
8.
Emerg Infect Dis ; 16(9): 1341-8, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20735916

RESUMO

Chronic granulomatous disease (CGD) is characterized by frequent infections, most of which are curable. Granulibacter bethesdensis is an emerging pathogen in patients with CGD that causes fever and necrotizing lymphadenitis. However, unlike typical CGD organisms, this organism can cause relapse after clinical quiescence. To better define whether infections were newly acquired or recrudesced, we use comparative bacterial genomic hybridization to characterize 11 isolates obtained from 5 patients with CGD from North and Central America. Genomic typing showed that 3 patients had recurrent infection months to years after apparent clinical cure. Two patients were infected with the same strain as previously isolated, and 1 was infected with a genetically distinct strain. This organism is multidrug resistant, and therapy required surgery and combination antimicrobial drugs, including long-term ceftriaxone. G. bethesdensis causes necrotizing lymphadenitis in CGD, which may recur or relapse.


Assuntos
Acetobacteraceae , Doenças Transmissíveis Emergentes/complicações , Doenças Transmissíveis Emergentes/microbiologia , Infecções por Bactérias Gram-Negativas/complicações , Infecções por Bactérias Gram-Negativas/microbiologia , Doença Granulomatosa Crônica/complicações , Doença Granulomatosa Crônica/microbiologia , Acetobacteraceae/classificação , Acetobacteraceae/efeitos dos fármacos , Acetobacteraceae/genética , Acetobacteraceae/isolamento & purificação , Adolescente , Adulto , Sequência de Bases , Doenças Transmissíveis Emergentes/diagnóstico , Doenças Transmissíveis Emergentes/tratamento farmacológico , Primers do DNA/genética , Genoma Bacteriano , Instabilidade Genômica , Infecções por Bactérias Gram-Negativas/diagnóstico , Infecções por Bactérias Gram-Negativas/tratamento farmacológico , Humanos , Masculino , RNA Bacteriano/genética , RNA Ribossômico 16S/genética , Recidiva
9.
Cell Microbiol ; 11(7): 1128-50, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19388904

RESUMO

Summary The highly infectious bacterium Francisella tularensis is a facultative intracellular pathogen, whose virulence requires proliferation inside host cells, including macrophages. Here we have performed a global transcriptional profiling of the highly virulent F. tularensis ssp. tularensis Schu S4 strain during its intracellular cycle within primary murine macrophages, to characterize its intracellular biology and identify pathogenic determinants based on their intracellular expression profiles. Phagocytosed bacteria rapidly responded to their intracellular environment and subsequently altered their transcriptional profile. Differential gene expression profiles were revealed that correlated with specific intracellular locale of the bacteria. Upregulation of general and oxidative stress response genes was a hallmark of the early phagosomal and late endosomal stages, while induction of transport and metabolic genes characterized the cytosolic replication stage. Expression of the Francisella Pathogenicity Island (FPI) genes, which are required for intracellular proliferation, increased during the intracellular cycle. Similarly, 27 chromosomal loci encoding putative hypothetical, secreted, outer membrane proteins or transcriptional regulators were identified as upregulated. Among these, deletion of FTT0383, FTT0369c or FTT1676 abolished the ability of Schu S4 to survive or proliferate intracellularly and cause lethality in mice, therefore identifying novel determinants of Francisella virulence from their intracellular expression profile.


Assuntos
Francisella tularensis/fisiologia , Perfilação da Expressão Gênica , Macrófagos/microbiologia , Análise de Sequência com Séries de Oligonucleotídeos , Fatores de Virulência/biossíntese , Animais , Transporte Biológico , Células Cultivadas , Citosol/microbiologia , Endossomos/microbiologia , Francisella tularensis/crescimento & desenvolvimento , Francisella tularensis/patogenicidade , Genes Bacterianos , Ilhas Genômicas , Camundongos , Camundongos Endogâmicos C57BL , Dados de Sequência Molecular , Estresse Oxidativo , Fagossomos/microbiologia , Estresse Fisiológico , Virulência
10.
J Virol ; 83(6): 2429-35, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19116259

RESUMO

Mammalian genomes harbor a large number of retroviral elements acquired as germ line insertions during evolution. Although many of the endogenous retroviruses are defective, several contain one or more intact viral genes that are expressed under certain physiological or pathological conditions. This is true of the endogenous polytropic retroviruses that generate recombinant polytropic murine leukemia viruses (MuLVs). In these recombinants the env gene sequences of exogenous ecotropic MuLVs are replaced with env gene sequences from an endogenous polytropic retrovirus. Although replication-competent endogenous polytropic retroviruses have not been observed, the recombinant polytropic viruses are capable of replicating in numerous species. Recombination occurs during reverse transcription of a virion RNA heterodimer comprised of an RNA transcript from an endogenous polytropic virus and an RNA transcript from an exogenous ecotropic MuLV RNA. It is possible that homodimers corresponding to two full-length endogenous RNA genomes are also packaged. Thus, infection by an exogenous virus may result not only in recombination with endogenous sequences, but also in the mobilization of complete endogenous retrovirus genomes via pseudotyping within exogenous retroviral virions. We report that the infection of mice with an ecotropic virus results in pseudotyping of intact endogenous viruses that have not undergone recombination. The endogenous retroviruses infect and are integrated into target cell genomes and subsequently replicate and spread as pseudotyped viruses. The mobilization of endogenous retroviruses upon infection with an exogenous retrovirus may represent a major interaction of exogenous retroviruses with endogenous retroviruses and may have profound effects on the pathogenicity of retroviral infections.


Assuntos
Retrovirus Endógenos/crescimento & desenvolvimento , Vírus da Leucemia Murina/crescimento & desenvolvimento , Montagem de Vírus , Animais , Linhagem Celular , DNA Viral/química , DNA Viral/genética , Retrovirus Endógenos/fisiologia , Vírus da Leucemia Murina/fisiologia , Camundongos , Dados de Sequência Molecular , Recombinação Genética , Análise de Sequência de DNA
11.
J Bacteriol ; 189(23): 8727-36, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17827295

RESUMO

Chronic granulomatous disease (CGD) is an inherited immune deficiency characterized by increased susceptibility to infection with Staphylococcus, certain gram-negative bacteria, and fungi. Granulibacter bethesdensis, a newly described genus and species within the family Acetobacteraceae, was recently isolated from four CGD patients residing in geographically distinct locales who presented with fever and lymphadenitis. We sequenced the genome of the reference strain of Granulibacter bethesdensis, which was isolated from lymph nodes of the original patient. The genome contains 2,708,355 base pairs in a single circular chromosome, in which 2,437 putative open reading frames (ORFs) were identified, 1,470 of which share sequence similarity with ORFs in the nonpathogenic but related Gluconobacter oxydans genome. Included in the 967 ORFs that are unique to G. bethesdensis are ORFs potentially important for virulence, adherence, DNA uptake, and methanol utilization. GC% values and best BLAST analysis suggested that some of these unique ORFs were recently acquired. Comparison of G. bethesdensis to other known CGD pathogens demonstrated conservation of some putative virulence factors, suggesting possible common mechanisms involved in pathogenesis in CGD. Genotyping of the four patient isolates by use of a custom microarray demonstrated genome-wide variations in regions encoding DNA uptake systems and transcriptional regulators and in hypothetical ORFs. G. bethesdensis is a genetically diverse emerging human pathogen that may have recently acquired virulence factors new to this family of organisms.


Assuntos
Acetobacteraceae/genética , Doenças Transmissíveis Emergentes/microbiologia , Genoma Bacteriano , Infecções por Bactérias Gram-Negativas/microbiologia , Proteínas de Bactérias/genética , Genes Bacterianos/genética , Doença Granulomatosa Crônica/microbiologia , Humanos , Fases de Leitura Aberta/genética
12.
J Virol ; 80(10): 4748-57, 2006 May.
Artigo em Inglês | MEDLINE | ID: mdl-16641268

RESUMO

Mixed retrovirus infections are the rule rather than the exception in mice and other species, including humans. Interactions of retroviruses in mixed infections and their effects on disease induction are poorly understood. Upon infection of mice, ecotropic retroviruses recombine with endogenous proviruses to generate polytropic viruses that utilize different cellular receptors. Interactions among the retroviruses of this mixed infection facilitate disease induction. Using mice infected with defined mixtures of the ecotropic Friend murine leukemia virus (F-MuLV) and different polytropic viruses, we demonstrate several dramatic effects of mixed infections. Remarkably, inoculation of F-MuLV with polytropic MuLVs completely suppressed the generation of new recombinant viruses and dramatically altered disease induction. Co-inoculation of F-MuLV with one polytropic virus significantly lengthened survival times, while inoculation with another polytropic MuLV induced a rapid and severe neurological disease. In both instances, the level of the polytropic MuLV was increased 100- to 1,000-fold, whereas the ecotropic MuLV level remained unchanged. Surprisingly, nearly all of the polytropic MuLV genomes were packaged within F-MuLV virions (pseudotyped) very soon after infection. At this time, only a fractional percentage of cells in the mouse were infected by either virus, indicating that the co-inoculated viruses had infected the same small subpopulation of susceptible cells. The profound amplification of polytropic MuLVs in coinfected mice may be facilitated by pseudotyping or, alternatively, by transactivation of the polytropic virus in the coinfected cells. This study illustrates the complexity of the interactions between components of mixed retrovirus infections and the dramatic effects of these interactions on disease processes.


Assuntos
Vírus da Leucemia Murina/fisiologia , Infecções por Retroviridae/metabolismo , Infecções por Retroviridae/virologia , Anemia/virologia , Animais , Injeções Intraperitoneais , Vírus da Leucemia Murina/classificação , Camundongos , Camundongos Endogâmicos , Células NIH 3T3 , Infecções por Retroviridae/mortalidade , Esplenomegalia/virologia , Vírion , Replicação Viral/fisiologia
13.
Proc Natl Acad Sci U S A ; 99(21): 13855-60, 2002 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-12370433

RESUMO

Two-component gene regulatory systems composed of a membrane-bound sensor and cytoplasmic response regulator are important mechanisms used by bacteria to sense and respond to environmental stimuli. Group A Streptococcus, the causative agent of mild infections and life-threatening invasive diseases, produces many virulence factors that promote survival in humans. A two-component regulatory system, designated covRS (cov, control of virulence; csrRS), negatively controls expression of five proven or putative virulence factors (capsule, cysteine protease, streptokinase, streptolysin S, and streptodornase). Inactivation of covRS results in enhanced virulence in mouse models of invasive disease. Using DNA microarrays and quantitative RT-PCR, we found that CovR influences transcription of 15% (n = 271) of all chromosomal genes, including many that encode surface and secreted proteins mediating host-pathogen interactions. CovR also plays a central role in gene regulatory networks by influencing expression of genes encoding transcriptional regulators, including other two-component systems. Differential transcription of genes influenced by covR also was identified in mouse soft-tissue infection. This analysis provides a genome-scale overview of a virulence gene network in an important human pathogen and adds insight into the molecular mechanisms used by group A Streptococcus to interact with the host, promote survival, and cause disease.


Assuntos
Genes Virais , Streptococcus pyogenes/genética , Streptococcus pyogenes/patogenicidade , Animais , Proteínas de Bactérias/genética , Perfilação da Expressão Gênica , Regulação Viral da Expressão Gênica , Humanos , Masculino , Camundongos , Camundongos Pelados , Modelos Biológicos , Mutação , Análise de Sequência com Séries de Oligonucleotídeos , Proteínas Quinases/genética , Proteínas Repressoras/genética , Infecções Estreptocócicas/etiologia , Virulência/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA