Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Brain Sci ; 14(4)2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38671983

RESUMO

Glioblastoma multiforme (GBM) stands out as the most tremendous brain tumor, constituting 60% of primary brain cancers, accompanied by dismal survival rates. Despite advancements in research, therapeutic options remain limited to chemotherapy and surgery. GBM molecular heterogeneity, the intricate interaction with the tumor microenvironment (TME), and non-selective treatments contribute to the neoplastic relapse. Diagnostic challenges arise from GBM advanced-stage detection, necessitating the exploration of novel biomarkers for early diagnosis. Using data from the literature and a bioinformatic tool, the current manuscript delineates the molecular interplay between human GBM, astrocytes, and myeloid cells, underscoring selected protein pathways belonging to astroglia and myeloid lineage, which can be considered for targeted therapies. Moreover, the pivotal role of extracellular vesicles (EVs) in orchestrating a favorable microenvironment for cancer progression is highlighted, suggesting their utility in identifying biomarkers for GBM early diagnosis.

2.
FEBS J ; 291(13): 2811-2835, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38362803

RESUMO

Neuronal differentiation is regulated by nerve growth factor (NGF) and other neurotrophins. We explored the impact of NGF on mitochondrial dynamics and metabolism through time-lapse imaging, metabolomics profiling, and computer modeling studies. We show that NGF may direct differentiation by stimulating fission, thereby causing selective mitochondrial network fragmentation and mitophagy, ultimately leading to increased mitochondrial quality and respiration. Then, we reconstructed the dynamic fusion-fission-mitophagy cycling of mitochondria in a computer model, integrating these processes into a single network mechanism. Both the computational model and the simulations are able to reproduce the proposed mechanism in terms of mitochondrial dynamics, levels of reactive oxygen species (ROS), mitophagy, and mitochondrial quality, thus providing a computational tool for the interpretation of the experimental data and for future studies aiming to detail further the action of NGF on mitochondrial processes. We also show that changes in these mitochondrial processes are intertwined with a metabolic function of NGF in differentiation: NGF directs a profound metabolic rearrangement involving glycolysis, TCA cycle, and the pentose phosphate pathway, altering the redox balance. This metabolic rewiring may ensure: (a) supply of both energy and building blocks for the anabolic processes needed for morphological reorganization, as well as (b) redox homeostasis.


Assuntos
Diferenciação Celular , Mitocôndrias , Dinâmica Mitocondrial , Mitofagia , Fator de Crescimento Neural , Neurônios , Espécies Reativas de Oxigênio , Fator de Crescimento Neural/metabolismo , Fator de Crescimento Neural/farmacologia , Fator de Crescimento Neural/genética , Dinâmica Mitocondrial/efeitos dos fármacos , Animais , Neurônios/metabolismo , Neurônios/citologia , Neurônios/efeitos dos fármacos , Mitocôndrias/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Células PC12 , Ratos , Mitofagia/efeitos dos fármacos , Ciclo do Ácido Cítrico/efeitos dos fármacos , Glicólise , Simulação por Computador , Reprogramação Metabólica
3.
Brain Sci ; 13(7)2023 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-37509010

RESUMO

The authors of the present literature piece were invited to participate in the present Special Issue at the beginning of 2022, and we were all very enthusiastic at the prospect of assembling a series of articles on new molecular targets and anti-cancer agents in glioblastoma multiforme (GBM) [...].

4.
Cells ; 11(24)2022 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-36552867

RESUMO

Inflammatory bowel diseases, including Crohn's disease and ulcerative colitis, are incurable autoimmune diseases characterized by chronic inflammation of the gastrointestinal tract. There is increasing evidence that inappropriate interaction between the enteric nervous system and central nervous system and/or low activity of the vagus nerve, which connects the enteric and central nervous systems, could play a crucial role in their pathogenesis. Therefore, it has been suggested that appropriate neuroprosthetic stimulation of the vagus nerve could lead to the modulation of the inflammation of the gastrointestinal tract and consequent long-term control of these autoimmune diseases. In the present paper, we provide a comprehensive overview of (1) the cellular and molecular bases of the immune system, (2) the way central and enteric nervous systems interact and contribute to the immune responses, (3) the pathogenesis of the inflammatory bowel disease, and (4) the therapeutic use of vagus nerve stimulation, and in particular, the transcutaneous stimulation of the auricular branch of the vagus nerve. Then, we expose the working hypotheses for the modulation of the molecular processes that are responsible for intestinal inflammation in autoimmune diseases and the way we could develop personalized neuroprosthetic therapeutic devices and procedures in favor of the patients.


Assuntos
Colite Ulcerativa , Doença de Crohn , Doenças Inflamatórias Intestinais , Estimulação do Nervo Vago , Humanos , Doença de Crohn/terapia , Estimulação do Nervo Vago/métodos , Doenças Inflamatórias Intestinais/terapia , Inflamação
5.
Mol Neurobiol ; 59(11): 6857-6873, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36048342

RESUMO

Glioblastoma multiforme (GBM) is the most aggressive primary brain tumor with a malignant prognosis. GBM is characterized by high cellular heterogeneity and its progression relies on the interaction with the central nervous system, which ensures the immune-escape and tumor promotion. This interplay induces metabolic, (epi)-genetic and molecular rewiring in both domains. In the present study, we aim to characterize the time-related changes in the GBM landscape, using a syngeneic mouse model of primary GBM. GL261 glioma cells were injected in the right striatum of immuno-competent C57Bl/6 mice and animals were sacrificed after 7, 14, and 21 days (7D, 14D, 21D). The tumor development was assessed through 3D tomographic imaging and brains were processed for immunohistochemistry, immunofluorescence, and western blotting. A human transcriptomic database was inquired to support the translational value of the experimental data. Our results showed the dynamic of the tumor progression, being established as a bulk at 14D and surrounded by a dense scar of reactive astrocytes. The GBM growth was paralleled by the impairment in the microglial/macrophagic recruitment and antigen-presenting functions, while the invasive phase was characterized by changes in the extracellular matrix, as shown by the analysis of tenascin C and metalloproteinase-9. The present study emphasizes the role of the molecular changes in the microenvironment during the GBM progression, fostering the development of novel multi-targeted, time-dependent therapies in an experimental model similar to the human disease.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Glioma , Evasão Tumoral , Microambiente Tumoral , Animais , Neoplasias Encefálicas/imunologia , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Glioblastoma/imunologia , Glioblastoma/patologia , Glioma/imunologia , Glioma/patologia , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Microglia/metabolismo , Tenascina/metabolismo
6.
Cells ; 11(8)2022 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-35456027

RESUMO

Glioblastoma (GBM) are among the most common malignant central nervous system (CNS) cancers, they are relatively rare. This evidence suggests that the CNS microenvironment is naturally equipped to control proliferative cells, although, rarely, failure of this system can lead to cancer development. Moreover, the adult CNS is innately non-permissive to glioma cell invasion. Thus, glioma etiology remains largely unknown. In this review, we analyze the anatomical and biological basis of gliomagenesis considering neural stem cells, the spatiotemporal diversity of astrocytes, microglia, neurons and glutamate transporters, extracellular matrix and the peritumoral environment. The precise understanding of subpopulations constituting GBM, particularly astrocytes, is not limited to glioma stem cells (GSC) and could help in the understanding of tumor pathophysiology. The anatomical fingerprint is essential for non-invasive assessment of patients' prognosis and correct surgical/radiotherapy planning.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Glioma , Adulto , Astrócitos/patologia , Biologia , Neoplasias Encefálicas/patologia , Glioblastoma/patologia , Glioma/patologia , Humanos , Microambiente Tumoral
7.
Int J Mol Sci ; 22(7)2021 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-33804873

RESUMO

Different functional states determine glioblastoma (GBM) heterogeneity. Brain cancer cells coexist with the glial cells in a functional syncytium based on a continuous metabolic rewiring. However, standard glioma therapies do not account for the effects of the glial cells within the tumor microenvironment. This may be a possible reason for the lack of improvements in patients with high-grade gliomas therapies. Cell metabolism and bioenergetic fitness depend on the availability of nutrients and interactions in the microenvironment. It is strictly related to the cell location in the tumor mass, proximity to blood vessels, biochemical gradients, and tumor evolution, underlying the influence of the context and the timeline in anti-tumor therapeutic approaches. Besides the cancer metabolic strategies, here we review the modifications found in the GBM-associated glia, focusing on morphological, molecular, and metabolic features. We propose to analyze the GBM metabolic rewiring processes from a systems biology perspective. We aim at defining the crosstalk between GBM and the glial cells as modules. The complex networking may be expressed by metabolic modules corresponding to the GBM growth and spreading phases. Variation in the oxidative phosphorylation (OXPHOS) rate and regulation appears to be the most important part of the metabolic and functional heterogeneity, correlating with glycolysis and response to hypoxia. Integrated metabolic modules along with molecular and morphological features could allow the identification of key factors for controlling the GBM-stroma metabolism in multi-targeted, time-dependent therapies.


Assuntos
Neoplasias Encefálicas/metabolismo , Glioblastoma/metabolismo , Microambiente Tumoral , Animais , Neoplasias Encefálicas/patologia , Glioblastoma/patologia , Humanos , Hipóxia Tumoral , Efeito Warburg em Oncologia
8.
Oxid Med Cell Longev ; 2019: 8056904, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31485299

RESUMO

Neuroinflammation, a hallmark of chronic neurodegenerative disorders, is characterized by sustained glial activation and the generation of an inflammatory loop, through the release of cytokines and other neurotoxic mediators that cause oxidative stress and limit functional repair of brain parenchyma. Dietary antioxidants may protect against neurodegenerative diseases by counteracting chronic neuroinflammation and reducing oxidative stress. Here, we describe the effects of a number of natural antioxidants (polyphenols, carotenoids, and thiolic molecules) in rescuing astrocytic function and neuronal viability following glial activation by reducing astrocyte proliferation and restoring astrocytic and neuronal survival and basal levels of reactive oxygen species (ROS). All antioxidant molecules are also effective under conditions of oxidative stress and glutamate toxicity, two maladaptive components of neuroinflammatory processes. Moreover, it is remarkable that their antioxidant and anti-inflammatory activity occurs through differential modulation of NF-κB binding activity in neurons and astrocytes. In fact, we show that inflammatory stimuli promote a significant induction of NF-κB binding activity in astrocytes and its concomitant reduction in neurons. These changes are prevented in astrocytes and neurons pretreated with the antioxidant molecules, suggesting that NF-κB plays a key role in the modulation of survival and anti-inflammatory responses. Finally, we newly demonstrate that effective antigliosis and neuroprotective activity is achieved with a defined cocktail of four natural antioxidants at very low concentrations, suggesting a promising strategy to reduce inflammatory and oxidative damage in neurodegenerative diseases with limited side effects.


Assuntos
Antioxidantes/metabolismo , Astrócitos/metabolismo , NF-kappa B/genética , Doenças Neurodegenerativas/genética , Neuroproteção/genética , Estresse Oxidativo/genética , Humanos
9.
Front Neurosci ; 13: 389, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31118880

RESUMO

Amputation of a sensory peripheral nerve induces severe anatomical and functional changes along the afferent pathway as well as perception alterations and neuropathic pain. In previous studies we showed that electrical stimulation applied to a transected infraorbital nerve protects the somatosensory cortex from the above-mentioned sensory deprivation-related changes. In the present study we focus on the initial tract of the somatosensory pathway and we investigate the way weak electrical stimulation modulates the neuroprotective-neuroregenerative and functional processes of trigeminal ganglia primary sensory neurons by studying the expression of neurotrophins (NTFs) and Glia-Derived Neurotrophic Factors (GDNFs) receptors. Neurostimulation was applied to the proximal stump of a transected left infraorbitary nerve using a neuroprosthetic micro-device 12 h/day for 4 weeks in freely behaving rats. Neurons were studied by in situ hybridization and immunohistochemistry against RET (proto-oncogene tyrosine kinase "rearranged during transfection"), tropomyosin-related kinases (TrkA, TrkB, TrkC) receptors and IB4 (Isolectin B4 from Griffonia simplicifolia). Intra-group (left vs. right ganglia) and inter-group comparisons (between Control, Axotomization and Stimulation-after-axotomization groups) were performed using the mean percentage change of the number of positive cells per section [100∗(left-right)/right)]. Intra-group differences were studied by paired t-tests. For inter-group comparisons ANOVA test followed by post hoc LSD test (when P < 0.05) were used. Significance level (α) was set to 0.05 in all cases. Results showed that (i) neurostimulation has heterogeneous effects on primary nociceptive and mechanoceptive/proprioceptive neurons; (ii) neurostimulation affects RET-expressing small and large neurons which include thermo-nociceptors and mechanoceptors, as well as on the IB4- and TrkB-positive populations, which mainly correspond to non-peptidergic thermo-nociceptive cells and mechanoceptors respectively. Our results suggest (i) electrical stimulation differentially affects modality-specific primary sensory neurons (ii) artificial input mainly acts on specific nociceptive and mechanoceptive neurons (iii) neuroprosthetic stimulation could be used to modulate peripheral nerve injuries-induced neuropathic pain. These could have important functional implications in both, the design of effective clinical neurostimulation-based protocols and the development of neuroprosthetic devices, controlling primary sensory neurons through selective neurostimulation.

10.
Front Mol Neurosci ; 12: 2, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30733667

RESUMO

Bruton's tyrosine-kinase (BTK) is a non-receptor tyrosine kinase recently associated with glioma tumorigenesis and a novel prognostic marker for poor survival in patients with glioma. The p65BTK is a novel BTK isoform involved in different pathways of drug resistance of solid tumors, thus we aimed to investigate the expression and the putative role of p65BTK in tumors of the central nervous system (CNS). We selected a large cohort of patients with glial tumors (n = 71) and analyzed the expression of p65BTK in different histotypes and correlation with clinical parameters. Sections were stained with glial fibrillary acidic protein (GFAP), p53, epidermal growth factor receptor (EGFR), S100, vimentin, and epithelial membrane antigen (EMA) antibodies. Glioma stem cell (GSC) lines, isolated from glioblastoma multiforme (GBM), were treated with different concentrations of ibrutinib, a specific inhibitor of BTK, in order to evaluate their metabolic activity, mitotic index and mortality. Moreover, an orthotopic xenotransplant of GSC from human GBM was used to evaluate the expression of p65BTK in the brain of immunodeficient mice. p65BTK was expressed in GSC and in gemistocytes in human gliomas at different histological grade. We found a significant correlation between BTK expression and low-grade (LG) tumors (p ≤ 0.05) and overall survival (OS) of patients with grade III gliomas (p ≤ 0.05), suggestive of worst prognosis. Interestingly, the expression of p65BTK remained restricted exclusively to gemistocytic cells in the xenograft mouse model. Ibrutinib administration significantly reduced metabolic activity and mitotic index and increased mortality in GSC, highlighting the specific role of p65BTK in cell proliferation and survival. In conclusion, our data demonstrated that p65BTK is expressed in glioma tumors, restricted to gemistocytic cells, has a key role in GSC and has a bad prognostic value, thus highlighting the importance of future research for targeted therapy of human gliomas.

11.
J Neuropathol Exp Neurol ; 78(2): 123-129, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30605553

RESUMO

Selective neuronal death in neurodegenerative disorders represents the final step of a cascade of events, including neuroinflammation, regional-specific reactive gliosis, changes of brain-blood barrier structure and functions, metabolic failure and mitochondrial energy impairment. Bilateral striatal necrosis is usually reported in inherited mitochondrial disorders, suggesting a pathogenetic role of the energy impairment by mitochondrial dysfunction. We investigated mechanisms of the selective striatal degeneration, comparing clinical findings of a patient with an acquired bilateral striatal necrosis and experimental data of a selective basal ganglia degenerative model in rats. In a 70-year-old patient affected by severe parkinsonian syndrome triggered by persistent metabolic acidosis, brain MRI revealed bilateral cystic-lacunar necrosis of basal ganglia. Immunohistochemistry of rat brain sections after single intraperitoneal administration (60 mg/kg) of the mitochondrial toxin 3-nitropropionic acid (3-NP) revealed (i) selective bilateral striatal necrotic/cavitary lesions, (ii) degeneration of striatal medium spiny neurons, (iii) evidence of synaptic and transcriptional dysfunction, and (iv) reactive gliosis (activated microglia and astrocytes) in the striatum. Our data provide an intriguing hypothesis for the selective neuronal degeneration in the striatum, claiming that selective mitochondrial energy impairment associated to loco-regional neuroinflammation and reactive gliosis might contribute to synaptic dysfunction and excitotoxicity that ultimately lead to neuronal degeneration.


Assuntos
Corpo Estriado/patologia , Corpo Estriado/fisiopatologia , Doenças Neurodegenerativas/patologia , Doenças Neurodegenerativas/fisiopatologia , Idoso , Animais , Astrócitos/patologia , Humanos , Masculino , Mitocôndrias/patologia , Necrose , Neurônios/patologia , Ratos , Ratos Sprague-Dawley
12.
Cell Death Dis ; 9(3): 391, 2018 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-29523844

RESUMO

Neuronal differentiation involves extensive modification of biochemical and morphological properties to meet novel functional requirements. Reorganization of the mitochondrial network to match the higher energy demand plays a pivotal role in this process. Mechanisms of neuronal differentiation in response to nerve growth factor (NGF) have been largely characterized in terms of signaling, however, little is known about its impact on mitochondrial remodeling and metabolic function. In this work, we show that NGF-induced differentiation requires the activation of autophagy mediated by Atg9b and Ambra1, as it is disrupted by their genetic knockdown and by autophagy blockers. NGF differentiation involves the induction of P-AMPK and P-CaMK, and is prevented by their pharmacological inhibition. These molecular events correlate with modifications of energy and redox homeostasis, as determined by ATP and NADPH changes, higher oxygen consumption (OCR) and ROS production. Our data indicate that autophagy aims to clear out exhausted mitochondria, as determined by enhanced localization of p62 and Lysotracker-red to mitochondria. In addition, we newly demonstrate that NGF differentiation is accompanied by increased mitochondrial remodeling involving higher levels of fission (P-Drp1) and fusion proteins (Opa1 and Mfn2), as well as induction of Sirt3 and the transcription factors mtTFA and PPARγ, which regulate mitochondria biogenesis and metabolism to sustain increased mitochondrial mass, potential, and bioenergetics. Overall, our data indicate a new NGF-dependent mechanism involving mitophagy and extensive mitochondrial remodeling, which plays a key role in both neurogenesis and nerve regeneration.


Assuntos
Diferenciação Celular , Mitocôndrias/metabolismo , Fator de Crescimento Neural/metabolismo , Neurônios/citologia , Neurônios/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Autofagia , Metabolismo Energético , Homeostase , Camundongos , Mitocôndrias/genética , Células PC12 , Ratos
13.
Int J Mol Sci ; 18(10)2017 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-29023416

RESUMO

Blood coagulation factors and other proteins, with modulatory effects or modulated by the coagulation cascade have been reported to affect the pathophysiology of the central nervous system (CNS). The protease-activated receptors (PARs) pathway can be considered the central hub of this regulatory network, mainly through thrombin or activated protein C (aPC). These proteins, in fact, showed peculiar properties, being able to interfere with synaptic homeostasis other than coagulation itself. These specific functions modulate neuronal networks, acting both on resident (neurons, astrocytes, and microglia) as well as circulating immune system cells and the extracellular matrix. The pleiotropy of these effects is produced through different receptors, expressed in various cell types, in a dose- and time-dependent pattern. We reviewed how these pathways may be involved in neurodegenerative diseases (amyotrophic lateral sclerosis, Alzheimer's and Parkinson's diseases), multiple sclerosis, ischemic stroke and post-ischemic epilepsy, CNS cancer, addiction, and mental health. These data open up a new path for the potential therapeutic use of the agonist/antagonist of these proteins in the management of several central nervous system diseases.


Assuntos
Fatores de Coagulação Sanguínea , Coagulação Sanguínea , Doenças do Sistema Nervoso Central/sangue , Animais , Astrócitos/metabolismo , Fatores de Coagulação Sanguínea/metabolismo , Barreira Hematoencefálica/metabolismo , Doenças do Sistema Nervoso Central/diagnóstico , Doenças do Sistema Nervoso Central/etiologia , Doenças do Sistema Nervoso Central/terapia , Humanos , Microglia/metabolismo , Neurônios/metabolismo , Proteólise , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA