Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Struct Biol ; 203(3): 247-254, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29763735

RESUMO

Cleavage of collagen by collagenases such as matrix metalloproteinase 1 (MMP-1) is a key step in development, tissue remodeling, and tumor proliferation. The abundant heterotrimeric type I collagen composed of two α1(I) chains and one α2(I) chain is efficiently cleaved by MMP-1 at a unique site in the triple helix, a process which may be initiated by local unfolding within the peptide chains. Atypical homotrimers of the α1(I) chain, found in embryonic and cancer tissues, are very resistant to MMP cleavage. To investigate MMP-1 cleavage, recombinant homotrimers were constructed with sequences from the MMP cleavage regions of human collagen chains inserted into a host bacterial collagen protein system. All triple-helical constructs were cleaved by MMP-1, with α2(I) homotrimers cleaved efficiently at a rate similar to that seen for α1(II) and α1(III) homotrimers, while α1(I) homotrimers were cleaved at a much slower rate. The introduction of destabilizing Gly to Ser mutations within the human collagenase susceptible region of the α2(I) chain did not interfere with MMP-1 cleavage. Molecular dynamics simulations indicated a greater degree of transient hydrogen bond breaking in α2(I) homotrimers compared with α1(I) homotrimers at the MMP-1 cleavage site, and showed an extensive disruption of hydrogen bonding in the presence of a Gly to Ser mutation, consistent with chymotrypsin digestion results. This study indicates that α2(I) homotrimers are susceptible to MMP-1, proves that the presence of an α1(I) chain is not a requirement for α2(I) cleavage, and supports the importance of local unfolding of α2(I) in collagenase cleavage.


Assuntos
Colágeno Tipo I/química , Colagenases/química , Metaloproteinase 1 da Matriz/química , Neoplasias/genética , Sequência de Aminoácidos/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Sítios de Ligação , Proliferação de Células/genética , Colágeno/química , Colágeno/genética , Colágeno Tipo I/genética , Colagenases/genética , Humanos , Ligação de Hidrogênio , Metaloproteinase 1 da Matriz/genética , Simulação de Dinâmica Molecular , Neoplasias/patologia , Ligação Proteica , Conformação Proteica , Conformação Proteica em alfa-Hélice/genética , Streptococcus pyogenes/química
2.
J Biol Chem ; 291(42): 22160-22172, 2016 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-27582494

RESUMO

Tissue inhibitor of metalloproteinases-3 (TIMP-3) is a central inhibitor of matrix-degrading and sheddase families of metalloproteinases. Extracellular levels of the inhibitor are regulated by the balance between its retention on the extracellular matrix and its endocytic clearance by the scavenger receptor low density lipoprotein receptor-related protein 1 (LRP1). Here, we used molecular modeling to predict TIMP-3 residues potentially involved in binding to LRP1 based on the proposed LRP1 binding motif of 2 lysine residues separated by about 21 Å and mutated the candidate lysine residues to alanine individually and in pairs. Of the 22 mutants generated, 13 displayed a reduced rate of uptake by HTB94 chondrosarcoma cells. The two mutants (TIMP-3 K26A/K45A and K42A/K110A) with lowest rates of uptake were further evaluated and found to display reduced binding to LRP1 and unaltered inhibitory activity against prototypic metalloproteinases. TIMP-3 K26A/K45A retained higher affinity for sulfated glycosaminoglycans than K42A/K110A and exhibited increased affinity for ADAMTS-5 in the presence of heparin. Both mutants inhibited metalloproteinase-mediated degradation of cartilage at lower concentrations and for longer than wild-type TIMP-3, indicating that their increased half-lives improved their ability to protect cartilage. These mutants may be useful in treating connective tissue diseases associated with increased metalloproteinase activity.


Assuntos
Neoplasias Ósseas/metabolismo , Condrossarcoma/metabolismo , Endocitose , Matriz Extracelular/metabolismo , Proteínas de Neoplasias/metabolismo , Inibidor Tecidual de Metaloproteinase-3/metabolismo , Proteína ADAMTS5/genética , Proteína ADAMTS5/metabolismo , Neoplasias Ósseas/genética , Neoplasias Ósseas/patologia , Cartilagem/metabolismo , Cartilagem/patologia , Linhagem Celular Tumoral , Condrossarcoma/genética , Condrossarcoma/patologia , Matriz Extracelular/genética , Matriz Extracelular/patologia , Heparina/metabolismo , Humanos , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/genética , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Proteínas de Neoplasias/genética , Inibidor Tecidual de Metaloproteinase-3/genética
3.
Matrix Biol ; 56: 57-73, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27084377

RESUMO

Matrix metalloproteinase 13 (MMP-13) degrades collagenous extracellular matrix and its aberrant activity associates with diseases such as arthritis, cancer, atherosclerosis and fibrosis. The wide range of MMP-13 proteolytic capacity suggests that it is a powerful, potentially destructive proteinase and thus it has been believed that MMP-13 is not produced in most adult human tissues in the steady state. Present study has revealed that human chondrocytes isolated from healthy adults constitutively express and secrete MMP-13, but that it is rapidly endocytosed and degraded by chondrocytes. Both pro- and activated MMP-13 bind to clusters II and III of low-density lipoprotein (LDL) receptor-related protein 1 (LRP1). Domain deletion studies indicated that the hemopexin domain is responsible for this interaction. Binding competition between MMP-13 and ADAMTS-4, -5 or TIMP-3, which also bind to cluster II, further shown that the MMP-13 binding site within cluster II is different from those of ADAMTS-4, -5 or TIMP-3. MMP-13 is therefore co-endocytosed with ADAMTS-5 and TIMP-3 by human chondrocytes. These findings indicate that MMP-13 may play a role on physiological turnover of cartilage extracellular matrix and that LRP1 is a key modulator of extracellular levels of MMP-13 and its internalization is independent of the levels of ADAMTS-4, -5 and TIMP-3.


Assuntos
Proteína ADAMTS5/metabolismo , Condrócitos/enzimologia , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Metaloproteinase 13 da Matriz/metabolismo , Inibidor Tecidual de Metaloproteinase-3/metabolismo , Proteína ADAMTS5/química , Ligação Competitiva , Endocitose , Células HEK293 , Humanos , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/química , Metaloproteinase 13 da Matriz/química , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Transporte Proteico , Inibidor Tecidual de Metaloproteinase-3/química
4.
J Biol Chem ; 289(35): 24091-101, 2014 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-25008319

RESUMO

Remodeling of collagen by matrix metalloproteinases (MMPs) is crucial to tissue homeostasis and repair. MMP-13 is a collagenase with a substrate preference for collagen II over collagens I and III. It recognizes a specific, well-known site in the tropocollagen molecule where its binding locally perturbs the triple helix, allowing the catalytic domain of the active enzyme to cleave the collagen α chains sequentially, at Gly(775)-Leu(776) in collagen II. However, the specific residues upon which collagen recognition depends within and surrounding this locus have not been systematically mapped. Using our triple-helical peptide Collagen Toolkit libraries in solid-phase binding assays, we found that MMP-13 shows little affinity for Collagen Toolkit III, but binds selectively to two triple-helical peptides of Toolkit II. We have identified the residues required for the adhesion of both proMMP-13 and MMP-13 to one of these, Toolkit peptide II-44, which contains the canonical collagenase cleavage site. MMP-13 was unable to bind to a linear peptide of the same sequence as II-44. We also discovered a second binding site near the N terminus of collagen II (starting at helix residue 127) in Toolkit peptide II-8. The pattern of binding of the free hemopexin domain of MMP-13 was similar to that of the full-length enzyme, but the free catalytic subunit bound none of our peptides. The susceptibility of Toolkit peptides to proteolysis in solution was independent of the very specific recognition of immobilized peptides by MMP-13; the enzyme proved able to cleave a range of dissolved collagen peptides.


Assuntos
Colágeno Tipo II/metabolismo , Metaloproteinase 13 da Matriz/metabolismo , Peptídeos/metabolismo , Sequência de Aminoácidos , Sequência de Bases , Colágeno Tipo II/química , Primers do DNA , Metaloproteinase 13 da Matriz/química , Dados de Sequência Molecular , Proteólise , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Especificidade por Substrato
5.
FASEB J ; 27(11): 4395-405, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23913860

RESUMO

Matrix metalloproteinase (MMP)-13 is one of the mammalian collagenases that play key roles in tissue remodelling and repair and in progression of diseases such as cancer, arthritis, atherosclerosis, and aneurysm. For collagenase to cleave triple helical collagens, the triple helical structure has to be locally unwound before hydrolysis, but this process is not well understood. We report crystal structures of catalytically inactive full-length human MMP-13(E223A) in complex with peptides of 14-26 aa derived from the cleaved prodomain during activation. Peptides are bound to the active site of the enzyme by forming an extended ß-strand with Glu(40) or Tyr(46) inserted into the S1' specificity pocket. The structure of the N-terminal part of the peptides is variable and interacts with different parts of the catalytic domain. Those areas are designated substrate-dependent exosites, in that they accommodate different peptide structures, whereas the precise positioning of the substrate backbone is maintained in the active site. These modes of peptide-MMP-13 interactions have led us to propose how triple helical collagen strands fit into the active site cleft of the collagenase.


Assuntos
Domínio Catalítico , Colágeno/química , Metaloproteinase 13 da Matriz/química , Simulação de Acoplamento Molecular , Peptídeos/química , Motivos de Aminoácidos , Sequência de Aminoácidos , Colágeno/metabolismo , Cristalografia por Raios X , Ácido Glutâmico/química , Humanos , Metaloproteinase 13 da Matriz/metabolismo , Dados de Sequência Molecular , Mutação de Sentido Incorreto , Peptídeos/metabolismo , Ligação Proteica , Tirosina/química
6.
Cancer Res ; 70(11): 4366-74, 2010 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-20460529

RESUMO

Collagen fibers affect metastasis in two opposing ways, by supporting invasive cells but also by generating a barrier to invasion. We hypothesized that these functions might be performed by different isoforms of type I collagen. Carcinomas are reported to contain alpha1(I)(3) homotrimers, a type I collagen isoform normally not present in healthy tissues, but the role of the homotrimers in cancer pathophysiology is unclear. In this study, we found that these homotrimers were resistant to all collagenolytic matrix metalloproteinases (MMP). MMPs are massively produced and used by cancer cells and cancer-associated fibroblasts for degrading stromal collagen at the leading edge of tumor invasion. The MMP-resistant homotrimers were produced by all invasive cancer cell lines tested, both in culture and in tumor xenografts, but they were not produced by cancer-associated fibroblasts, thereby comprising a specialized fraction of tumor collagen. We observed the homotrimer fibers to be resistant to pericellular degradation, even upon stimulation of the cells with proinflammatory cytokines. Furthermore, we confirmed an enhanced proliferation and migration of invasive cancer cells on the surface of homotrimeric versus normal (heterotrimeric) type I collagen fibers. In summary, our findings suggest that invasive cancer cells may use homotrimers for building MMP-resistant invasion paths, supporting local proliferation and directed migration of the cells whereas surrounding normal stromal collagens are cleaved. Because the homotrimers are universally secreted by cancer cells and deposited as insoluble, MMP-resistant fibers, they offer an appealing target for cancer diagnostics and therapy.


Assuntos
Colágeno Tipo I/metabolismo , Fibrossarcoma/metabolismo , Fibrossarcoma/patologia , Metaloproteinases da Matriz/metabolismo , Animais , Processos de Crescimento Celular/fisiologia , Movimento Celular/fisiologia , Fibroblastos/metabolismo , Fibrossarcoma/enzimologia , Humanos , Isoenzimas , Camundongos , Camundongos Nus , Invasividade Neoplásica
7.
J Biol Chem ; 285(29): 22276-81, 2010 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-20463013

RESUMO

Type I collagen cleavage is crucial for tissue remodeling, but its homotrimeric isoform is resistant to all collagenases. The homotrimers occur in fetal tissues, fibrosis, and cancer, where their collagenase resistance may play an important physiological role. To understand the mechanism of this resistance, we studied interactions of alpha1(I)(3) homotrimers and normal alpha1(I)(2)alpha2(I) heterotrimers with fibroblast collagenase (MMP-1). Similar MMP-1 binding to the two isoforms and similar cleavage efficiency of unwound alpha1(I) and alpha2(I) chains suggested increased stability and less efficient unwinding of the homotrimer triple helix at the collagenase cleavage site. The unwinding, necessary for placing individual chains inside the catalytic cleft of the enzyme, was the rate-limiting cleavage step for both collagen isoforms. Comparative analysis of the homo- and heterotrimer cleavage kinetics revealed that MMP-1 binding promotes stochastic helix unwinding, resolving the controversy between different models of collagenase action.


Assuntos
Colágeno Tipo I/química , Colágeno Tipo I/metabolismo , Metaloproteinase 1 da Matriz/metabolismo , Multimerização Proteica , Animais , Colágenos Fibrilares/metabolismo , Humanos , Cinética , Camundongos , Microscopia Confocal , Modelos Biológicos , Ligação Proteica , Estrutura Terciária de Proteína , Proteínas Recombinantes/metabolismo , Temperatura
8.
J Med Chem ; 52(15): 4757-73, 2009 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-19606871

RESUMO

Matrix metalloproteinase-13 (MMP-13) is a key enzyme implicated in the degradation of the extracellular matrix in osteoarthritis (OA). For this reason, MMP-13 synthetic inhibitors are being sought as potential therapeutic agents to prevent cartilage degradation and to halt the progression of OA. Herein, we report the synthesis and in vitro evaluation of a new series of selective MMP-13 inhibitors possessing an arylsulfonamidic scaffold. Among these potential inhibitors, a very promising compound was discovered exhibiting nanomolar activity for MMP-13 and was highly selective for this enzyme compared to MMP-1, -14, and TACE. This compound acted as a slow-binding inhibitor of MMP-13 and was demonstrated to be effective in an in vitro collagen assay and in a model of cartilage degradation. Furthermore, a docking study was conducted for this compound in order to investigate its binding interactions with MMP-13 and the reasons for its selectivity toward MMP-13 versus other MMPs.


Assuntos
Desenho de Fármacos , Ácidos Hidroxâmicos/síntese química , Inibidores de Metaloproteinases de Matriz , Osteoartrite/tratamento farmacológico , Inibidores de Proteases/síntese química , Proteínas ADAM/química , Proteína ADAM17 , Cartilagem/metabolismo , Ácidos Hidroxâmicos/farmacologia , Ácidos Hidroxâmicos/uso terapêutico , Metaloproteinase 1 da Matriz/química , Metaloproteinase 13 da Matriz/química , Metaloproteinase 14 da Matriz/química , Modelos Moleculares , Inibidores de Proteases/farmacologia , Inibidores de Proteases/uso terapêutico , Relação Estrutura-Atividade
9.
Biochemistry ; 47(2): 537-47, 2008 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-18081311

RESUMO

Human ADAM12 (a disintegrin and metalloproteinase) is a multidomain zinc metalloproteinase expressed at high levels during development and in human tumors. ADAM12 exists as two splice variants: a classical type 1 membrane-anchored form (ADAM12-L) and a secreted splice variant (ADAM12-S) consisting of pro, catalytic, disintegrin, cysteine-rich, and EGF domains. Here we present a novel activity of recombinant ADAM12-S and its domain deletion mutants on S-carboxymethylated transferrin (Cm-Tf). Cleavage of Cm-Tf occurred at multiple sites, and N-terminal sequencing showed that the enzyme exhibits restricted specificity but a consensus sequence could not be defined as its subsite requirements are promiscuous. Kinetic analysis revealed that the noncatalytic C-terminal domains are important regulators of Cm-Tf activity and that ADAM12-PC consisting of the pro domain and catalytic domain is the most active on this substrate. It was also observed that NaCl inhibits ADAM12. Among the tissue inhibitors of metalloproteinases (TIMP) examined, the N-terminal domain of TIMP-3 (N-TIMP-3) inhibits ADAM12-S and ADAM12-PC with low nanomolar Ki(app) values while TIMP-2 inhibits them with a slightly lower affinity (9-44 nM). However, TIMP-1 is a much weaker inhibitor. N-TIMP-3 variants that lack MMP inhibitory activity but retained the ability to inhibit ADAM17/TACE failed to inhibit ADAM12. These results indicate unique enzymatic properties of ADAM12 among the members of the ADAM family of metalloproteinases.


Assuntos
Proteínas ADAM/química , Proteínas ADAM/metabolismo , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Proteínas Mutantes/metabolismo , Deleção de Sequência , Proteínas ADAM/antagonistas & inibidores , Proteínas ADAM/isolamento & purificação , Proteína ADAM12 , Sequência de Aminoácidos , Animais , Cálcio/farmacologia , Catálise , Eletroforese em Gel de Poliacrilamida , Cobaias , Humanos , Concentração de Íons de Hidrogênio , Cinética , Proteínas de Membrana/antagonistas & inibidores , Proteínas de Membrana/isolamento & purificação , Metais/farmacologia , Dados de Sequência Molecular , Proteínas Mutantes/antagonistas & inibidores , Proteínas Mutantes/química , Proteínas Mutantes/isolamento & purificação , Isoformas de Proteínas/antagonistas & inibidores , Isoformas de Proteínas/química , Isoformas de Proteínas/isolamento & purificação , Isoformas de Proteínas/metabolismo , Estrutura Terciária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Análise de Sequência de Proteína , Cloreto de Sódio/farmacologia , Especificidade por Substrato/efeitos dos fármacos , Inibidores Teciduais de Metaloproteinases/metabolismo , Transferrina/metabolismo
10.
J Mol Biol ; 362(1): 78-88, 2006 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-16890240

RESUMO

The extracellular matrix is a dynamic environment that constantly undergoes remodelling and degradation during vital physiological processes such as angiogenesis, wound healing, and development. Unbalanced extracellular matrix breakdown is associated with many diseases such as arthritis, cancer and fibrosis. Interstitial collagen is degraded by matrix metalloproteinases with collagenolytic activity by MMP-1, MMP-8 and MMP-13, collectively known as the collagenases. Matrix metalloproteinase 1 (MMP-1) plays a pivotal role in degradation of interstitial collagen types I, II, and III. Here, we report the crystal structure of the active form of human MMP-1 at 2.67 A resolution. This is the first MMP-1 structure that is free of inhibitor and a water molecule essential for peptide hydrolysis is observed coordinated with the active site zinc. Comparing this structure with the human proMMP-1 shows significant structural differences, mainly in the relative orientation of the hemopexin domain, between the pro form and active form of the human enzyme.


Assuntos
Metaloproteinase 1 da Matriz/química , Estrutura Terciária de Proteína , Animais , Domínio Catalítico , Colagenases/química , Colagenases/genética , Cristalografia por Raios X , Precursores Enzimáticos/química , Precursores Enzimáticos/genética , Hemopexina/química , Hemopexina/genética , Humanos , Ligação de Hidrogênio , Metaloproteinase 1 da Matriz/genética , Metaloproteinase 1 da Matriz/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Suínos
11.
Cardiovasc Res ; 69(3): 562-73, 2006 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-16405877

RESUMO

Matrix metalloproteinases (MMPs), also called matrixins, function in the extracellular environment of cells and degrade both matrix and non-matrix proteins. They play central roles in morphogenesis, wound healing, tissue repair and remodelling in response to injury, e.g. after myocardial infarction, and in progression of diseases such as atheroma, arthritis, cancer and chronic tissue ulcers. They are multi-domain proteins and their activities are regulated by tissue inhibitors of metalloproteinases (TIMPs). This review introduces the members of the MMP family and discusses their domain structure and function, proenyme activation, the mechanism of inhibition by TIMPs and their significance in physiology and pathology.


Assuntos
Sistema Cardiovascular/enzimologia , Matriz Extracelular/enzimologia , Metaloproteinases da Matriz/química , Inibidores Teciduais de Metaloproteinases/química , Animais , Doenças Cardiovasculares/enzimologia , Humanos , Inibidores de Metaloproteinases de Matriz , Relação Estrutura-Atividade , Inibidores Teciduais de Metaloproteinases/metabolismo
12.
J Biol Chem ; 280(10): 9578-85, 2005 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-15611040

RESUMO

Vertebrate collagenases, members of the matrix metalloproteinase (MMP) family, initiate interstitial fibrillar collagen breakdown. It is essential in many biological processes, and unbalanced collagenolysis is associated with diseases such as arthritis, cancer, atherosclerosis, aneurysm, and fibrosis. These metalloproteinases are secreted from the cell as inactive precursors, procollagenases (proMMPs). To gain insights into the structural basis of their activation mechanisms and collagen binding, we have crystallized recombinant human proMMP-1 and determined its structure to 2.2 A resolution. The catalytic metalloproteinase domain and the C-terminal hemopexin (Hpx) domain show the classical MMP-fold, but the structure has revealed new features in surface loops and domain interaction. The prodomain is formed by a three-helix bundle and gives insight into the stepwise activation mechanism of proMMP-1. The prodomain interacts with the Hpx domain, which affects the position of the Hpx domain relative to the catalytic domain. This interaction results in a "closed" configuration of proMMP-1 in contrast to the "open" configuration observed previously for the structure of active MMP-1. This is the first evidence of mobility of the Hpx domain in relation to the catalytic domain, providing an important clue toward the understanding of the collagenase-collagen interaction and subsequent collagenolysis.


Assuntos
Colágeno/metabolismo , Colagenases/química , Colagenases/metabolismo , Precursores Enzimáticos/química , Precursores Enzimáticos/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , Cristalografia por Raios X , Humanos , Ligação de Hidrogênio , Metaloproteinase 1 da Matriz , Modelos Moleculares , Dados de Sequência Molecular , Estrutura Secundária de Proteína
13.
EMBO J ; 23(15): 3020-30, 2004 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-15257288

RESUMO

Breakdown of triple-helical interstitial collagens is essential in embryonic development, organ morphogenesis and tissue remodelling and repair. Aberrant collagenolysis may result in diseases such as arthritis, cancer, atherosclerosis, aneurysm and fibrosis. In vertebrates, it is initiated by collagenases belonging to the matrix metalloproteinase (MMP) family. The three-dimensional structure of a prototypic collagenase, MMP-1, indicates that the substrate-binding site of the enzyme is too narrow to accommodate triple-helical collagen. Here we report that collagenases bind and locally unwind the triple-helical structure before hydrolyzing the peptide bonds. Mutation of the catalytically essential residue Glu200 of MMP-1 to Ala resulted in a catalytically inactive enzyme, but in its presence noncollagenolytic proteinases digested collagen into typical 3/4 and 1/4 fragments, indicating that the MMP-1(E200A) mutant unwinds the triple-helical collagen. The study also shows that MMP-1 preferentially interacts with the alpha2(I) chain of type I collagen and cleaves the three alpha chains in succession. Our results throw light on the basic mechanisms that control a wide range of biological and pathological processes associated with tissue remodelling.


Assuntos
Colágeno/química , Colágeno/metabolismo , Metaloproteinase 1 da Matriz/química , Metaloproteinase 1 da Matriz/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , Domínio Catalítico , Ácido Glutâmico/genética , Ácido Glutâmico/metabolismo , Hidrólise , Metaloproteinase 1 da Matriz/genética , Metaloproteinase 3 da Matriz/química , Metaloproteinase 3 da Matriz/genética , Metaloproteinase 3 da Matriz/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Mutação/genética , Estrutura Terciária de Proteína , Temperatura
14.
Circ Res ; 92(8): 827-39, 2003 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-12730128

RESUMO

Matrix metalloproteinases (MMPs), also designated matrixins, hydrolyze components of the extracellular matrix. These proteinases play a central role in many biological processes, such as embryogenesis, normal tissue remodeling, wound healing, and angiogenesis, and in diseases such as atheroma, arthritis, cancer, and tissue ulceration. Currently 23 MMP genes have been identified in humans, and most are multidomain proteins. This review describes the members of the matrixin family and discusses substrate specificity, domain structure and function, the activation of proMMPs, the regulation of matrixin activity by tissue inhibitors of metalloproteinases, and their pathophysiological implication.


Assuntos
Metaloproteinases da Matriz/metabolismo , Inibidores Teciduais de Metaloproteinases/metabolismo , Mapeamento Cromossômico , Precursores Enzimáticos/metabolismo , Humanos , Metaloproteinases da Matriz/química , Metaloproteinases da Matriz/genética , Modelos Moleculares , Família Multigênica/genética , Conformação Proteica , Inibidores Teciduais de Metaloproteinases/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA